
 2007 Pearson Education, Inc. All rights reserved.

1

10
C Structures, Unions,
Bit Manipulations and

Enumerations

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

2

But yet an union in partition.
—William Shakespeare

The same old charitable lie
Repeated as the years scoot by
Perpetually makes a hit—
“You really haven’t changed a bit!”

—Margaret Fishback

I could never make out what those
damned dots meant.

—Winston Churchill

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

3

OBJECTIVES
In this chapter you will learn:
 To create and use structures, unions and

enumerations.
 To pass structures to functions by value and

by reference.
 To manipulate data with the bitwise operators.
 To create bit fields for storing data compactly.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

4

10.1 Introduction
10.2 Structure Definitions
10.3 Initializing Structures
10.4 Accessing Members of Structures
10.5 Using Structures with Functions
10.6 typedef

10.7 Example: High-Performance Card Shuffling and
Dealing Simulation

10.8 Unions
10.9 Bitwise Operators
10.10 Bit Fields
10.11 Enumeration Constants

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

5

10.1 Introduction

 Structures
– Collections of related variables (aggregates) under one

name
- Can contain variables of different data types

– Commonly used to define records to be stored in files
– Combined with pointers, can create linked lists, stacks,

queues, and trees

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

6

10.2 Structure Definitions

Example
struct card {

char *face;

char *suit;
};

– struct introduces the definition for structure card
– card is the structure name and is used to declare variables

of the structure type
– card contains two members of type char *

- These members are face and suit

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

7

Common Programming Error 10.1

Forgetting the semicolon that terminates
a structure definition is a syntax error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

8

10.2 Structure Definitions
 struct information

– A struct cannot contain an instance of itself
– Can contain a member that is a pointer to the same structure

type
– A structure definition does not reserve space in memory

- Instead creates a new data type used to define structure variables

 Definitions
– Defined like other variables:

card oneCard, deck[52], *cPtr;

– Can use a comma separated list:
struct card {

char *face;

char *suit;

} oneCard, deck[52], *cPtr;

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

9

Good Programming Practice 10.1

Always provide a structure tag name when
creating a structure type. The structure tag
name is convenient for declaring new variables
of the structure type later in the program.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

10

Good Programming Practice 10.2

Choosing a meaningful structure tag name
helps make a program self-documenting.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

11

10.2 Structure Definitions

Valid Operations
– Assigning a structure to a structure of the same type
– Taking the address (&) of a structure
– Accessing the members of a structure
– Using the sizeof operator to determine the size of a

structure

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

12

Common Programming Error 10.2

Assigning a structure of one type to a structure
of a different type is a compilation error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

13

Common Programming Error 10.3

Comparing structures is a syntax error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

14

Fig. 10.1 | Possible storage alignment for a variable of type struct example showing an
undefined area in memory.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

15

Portability Tip 10.1

Because the size of data items of a particular
type is machine dependent and because storage
alignment considerations are machine
dependent, so too is the representation of a
structure.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

16

10.3 Initializing Structures

 Initializer lists
– Example:

card oneCard = { "Three", "Hearts" };

Assignment statements
– Example:

card threeHearts = oneCard;

– Could also define and initialize threeHearts as
follows:
card threeHearts;

threeHearts.face = “Three”;

threeHearts.suit = “Hearts”;

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

17

10.4 Accessing Members of Structures

Accessing structure members
– Dot operator (.) used with structure variables

card myCard;

printf("%s", myCard.suit);

– Arrow operator (->) used with pointers to structure
variables
card *myCardPtr = &myCard;

printf("%s", myCardPtr->suit);

– myCardPtr->suit is equivalent to
(*myCardPtr).suit

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

18

Error-Prevention Tip 10.1

Avoid using the same names for members of
structures of different types. This is allowed,
but it may cause confusion.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

19

Good Programming Practice 10.3

Do not put spaces around the -> and .
operators. Omitting spaces helps emphasize
that the expressions the operators are
contained in are essentially single variable
names.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

20

Common Programming Error 10.4

Inserting space between the - and > components
of the structure pointer operator (or between the
components of any other multiple keystroke
operator except ?:) is a syntax error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

21

Common Programming Error 10.5

Attempting to refer to a member of a
structure by using only the member’s
name is a syntax error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

22

Common Programming Error 10.6

Not using parentheses when referring to
a structure member that uses a pointer
and the structure member operator
(e.g., *cardPtr.suit) is a syntax error.

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

23 1 /* Fig. 10.2: fig10_02.c

 2 Using the structure member and

 3 structure pointer operators */

 4 #include <stdio.h>

 5
 6 /* card structure definition */

 7 struct card {

 8 char *face; /* define pointer face */

 9 char *suit; /* define pointer suit */

10 }; /* end structure card */
11
12 int main(void)
13 {
14 struct card aCard; /* define one struct card variable */
15 struct card *cardPtr; /* define a pointer to a struct card */
16
17 /* place strings into aCard */
18 aCard.face = "Ace";
19 aCard.suit = "Spades";

Outline

fig10_02.c

(1 of 2)
Structure definition

Structure definition must end with semicolon

Dot operator accesses members of a structure

http://www.uml.org/

		
1
/* Fig. 10.2: fig10_02.c

		
2
 Using the structure member and

		
3
 structure pointer operators */

		
4
#include <stdio.h>

		
5

		
6
/* card structure definition */

		
7
struct card {

		
8
 char *face; /* define pointer face */

		
9
 char *suit; /* define pointer suit */

		
10
}; /* end structure card */

		
11

		
12
int main(void)

		
13
{

		
14
 struct card aCard; /* define one struct card variable */

		
15
 struct card *cardPtr; /* define a pointer to a struct card */

		
16

		
17
 /* place strings into aCard */

		
18
 aCard.face = "Ace";

		
19
 aCard.suit = "Spades";

 2007 Pearson Education,
Inc. All rights reserved.

2420
21 cardPtr = &aCard; /* assign address of aCard to cardPtr */
22
23 printf("%s%s%s\n%s%s%s\n%s%s%s\n", aCard.face, " of ", aCard.suit,
24 cardPtr->face, " of ", cardPtr->suit,
25 (*cardPtr).face, " of ", (*cardPtr).suit);
26
27 return 0; /* indicates successful termination */
28
29 } /* end main */

Ace of Spades
Ace of Spades
Ace of Spades

Outline

fig10_02.c

(2 of 2)

Arrow operator accesses members
of a structure pointer

http://www.uml.org/

		
20

		
21
 cardPtr = &aCard; /* assign address of aCard to cardPtr */

		
22

		
23
 printf("%s%s%s\n%s%s%s\n%s%s%s\n", aCard.face, " of ", aCard.suit,

		
24
 cardPtr->face, " of ", cardPtr->suit,

		
25
 (*cardPtr).face, " of ", (*cardPtr).suit);

		
26

		
27
 return 0; /* indicates successful termination */

		
28

		
29
} /* end main */

		Ace of Spades

Ace of Spades

Ace of Spades

 2007 Pearson Education, Inc. All rights reserved.

25

10.5 Using Structures with Functions

 Passing structures to functions
– Pass entire structure

- Or, pass individual members
– Both pass call by value

To pass structures call-by-reference
– Pass its address
– Pass reference to it

To pass arrays call-by-value
– Create a structure with the array as a member
– Pass the structure

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

26

Common Programming Error 10.7

Assuming that structures, like arrays, are
automatically passed by reference and trying
to modify the caller’s structure values in the
called function is a logic error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

27

Performance Tip 10.1

Passing structures by reference is more
efficient than passing structures by value
(which requires the entire structure to be
copied).

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

28

10.6 typedef

 typedef

– Creates synonyms (aliases) for previously defined data
types

– Use typedef to create shorter type names
– Example:

typedef struct Card *CardPtr;

– Defines a new type name CardPtr as a synonym for type
struct Card *

– typedef does not create a new data type
- Only creates an alias

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

29

Good Programming Practice 10.4

Capitalize the first letter of typedef names
to emphasize that they are synonyms for
other type names.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

30

Portability Tip 10.2

Use typedef to help make a program
more portable.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

31

10.7 Example: High-Performance Card
Shuffling and Dealing Simulation
 Pseudocode:

– Create an array of card structures
– Put cards in the deck
– Shuffle the deck
– Deal the cards

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

32 1 /* Fig. 10.3: fig10_03.c

 2 The card shuffling and dealing program using structures */

 3 #include <stdio.h>

 4 #include <stdlib.h>

 5 #include <time.h>

 6
 7 /* card structure definition */

 8 struct card {

 9 const char *face; /* define pointer face */

10 const char *suit; /* define pointer suit */
11 }; /* end structure card */
12
13 typedef struct card Card; /* new type name for struct card */
14
15 /* prototypes */
16 void fillDeck(Card * const wDeck, const char * wFace[],
17 const char * wSuit[]);
18 void shuffle(Card * const wDeck);
19 void deal(const Card * const wDeck);
20
21 int main(void)
22 {
23 Card deck[52]; /* define array of Cards */
24
25 /* initialize array of pointers */
26 const char *face[] = { "Ace", "Deuce", "Three", "Four", "Five",
27 "Six", "Seven", "Eight", "Nine", "Ten",
28 "Jack", "Queen", "King"};
29

Outline

fig10_03.c

(1 of 3)
Each card has a face and a suit

Card is now an alias for
struct card

http://www.uml.org/

		
1
/* Fig. 10.3: fig10_03.c

		
2
 The card shuffling and dealing program using structures */

		
3
#include <stdio.h>

		
4
#include <stdlib.h>

		
5
#include <time.h>

		
6

		
7
/* card structure definition */

		
8
struct card {

		
9
 const char *face; /* define pointer face */

		
10
 const char *suit; /* define pointer suit */

		
11
}; /* end structure card */

		
12

		
13
typedef struct card Card; /* new type name for struct card */

		
14

		
15
/* prototypes */

		
16
void fillDeck(Card * const wDeck, const char * wFace[],

		
17
 const char * wSuit[]);

		
18
void shuffle(Card * const wDeck);

		
19
void deal(const Card * const wDeck);

		
20

		
21
int main(void)

		
22
{

		
23
 Card deck[52]; /* define array of Cards */

		
24

		
25
 /* initialize array of pointers */

		
26
 const char *face[] = { "Ace", "Deuce", "Three", "Four", "Five",

		
27
 "Six", "Seven", "Eight", "Nine", "Ten",

		
28
 "Jack", "Queen", "King"};

		
29

 2007 Pearson Education,
Inc. All rights reserved.

3330 /* initialize array of pointers */
31 const char *suit[] = { "Hearts", "Diamonds", "Clubs", "Spades"};
32
33 srand(time(NULL)); /* randomize */
34
35 fillDeck(deck, face, suit); /* load the deck with Cards */
36 shuffle(deck); /* put Cards in random order */
37 deal(deck); /* deal all 52 Cards */
38
39 return 0; /* indicates successful termination */
40
41 } /* end main */
42
43 /* place strings into Card structures */
44 void fillDeck(Card * const wDeck, const char * wFace[],
45 const char * wSuit[])
46 {
47 int i; /* counter */
48
49 /* loop through wDeck */
50 for (i = 0; i <= 51; i++) {
51 wDeck[i].face = wFace[i % 13];
52 wDeck[i].suit = wSuit[i / 13];
53 } /* end for */
54
55 } /* end function fillDeck */
56

Outline

fig10_03.c

(2 of 3)

Constant pointer to
modifiable array of Cards

Fills the deck by giving each
Card a face and suit

http://www.uml.org/

		
30
 /* initialize array of pointers */

		
31
 const char *suit[] = { "Hearts", "Diamonds", "Clubs", "Spades"};

		
32

		
33
 srand(time(NULL)); /* randomize */

		
34

		
35
 fillDeck(deck, face, suit); /* load the deck with Cards */

		
36
 shuffle(deck); /* put Cards in random order */

		
37
 deal(deck); /* deal all 52 Cards */

		
38

		
39
 return 0; /* indicates successful termination */

		
40

		
41
} /* end main */

		
42

		
43
/* place strings into Card structures */

		
44
void fillDeck(Card * const wDeck, const char * wFace[],

		
45
 const char * wSuit[])

		
46
{

		
47
 int i; /* counter */

		
48

		
49
 /* loop through wDeck */

		
50
 for (i = 0; i <= 51; i++) {

		
51
 wDeck[i].face = wFace[i % 13];

		
52
 wDeck[i].suit = wSuit[i / 13];

		
53
 } /* end for */

		
54

		
55
} /* end function fillDeck */

		
56

 2007 Pearson Education,
Inc. All rights reserved.

3457 /* shuffle cards */
58 void shuffle(Card * const wDeck)
59 {
60 int i; /* counter */
61 int j; /* variable to hold random value between 0 - 51 */
62 Card temp; /* define temporary structure for swapping Cards */
63
64 /* loop through wDeck randomly swapping Cards */
65 for (i = 0; i <= 51; i++) {
66 j = rand() % 52;
67 temp = wDeck[i];
68 wDeck[i] = wDeck[j];
69 wDeck[j] = temp;
70 } /* end for */
71
72 } /* end function shuffle */
73
74 /* deal cards */
75 void deal(const Card * const wDeck)
76 {
77 int i; /* counter */
78
79 /* loop through wDeck */
80 for (i = 0; i <= 51; i++) {
81 printf("%5s of %-8s%c", wDeck[i].face, wDeck[i].suit,
82 (i + 1) % 2 ? '\t' : '\n');
83 } /* end for */
84
85 } /* end function deal */

Outline

fig10_03.c

(3 of 3)

Each card is swapped with another,
random card, shuffling the deck

http://www.uml.org/

		
57
/* shuffle cards */

		
58
void shuffle(Card * const wDeck)

		
59
{

		
60
 int i; /* counter */

		
61
 int j; /* variable to hold random value between 0 - 51 */

		
62
 Card temp; /* define temporary structure for swapping Cards */

		
63

		
64
 /* loop through wDeck randomly swapping Cards */

		
65
 for (i = 0; i <= 51; i++) {

		
66
 j = rand() % 52;

		
67
 temp = wDeck[i];

		
68
 wDeck[i] = wDeck[j];

		
69
 wDeck[j] = temp;

		
70
 } /* end for */

		
71

		
72
} /* end function shuffle */

		
73

		
74
/* deal cards */

		
75
void deal(const Card * const wDeck)

		
76
{

		
77
 int i; /* counter */

		
78

		
79
 /* loop through wDeck */

		
80
 for (i = 0; i <= 51; i++) {

		
81
 printf("%5s of %-8s%c", wDeck[i].face, wDeck[i].suit,

		
82
 (i + 1) % 2 ? '\t' : '\n');

		
83
 } /* end for */

		
84

		
85
} /* end function deal */

 2007 Pearson Education,
Inc. All rights reserved.

35
Outline

Four of Clubs Three of Hearts

Three of Diamonds Three of Spades

 Four of Diamonds Ace of Diamonds

 Nine of Hearts Ten of Clubs

Three of Clubs Four of Hearts

Eight of Clubs Nine of Diamonds

Deuce of Clubs Queen of Clubs

Seven of Clubs Jack of Spades

 Ace of Clubs Five of Diamonds

 Ace of Spades Five of Clubs

Seven of Diamonds Six of Spades

Eight of Spades Queen of Hearts

 Five of Spades Deuce of Diamonds

Queen of Spades Six of Hearts

Queen of Diamonds Seven of Hearts

 Jack of Diamonds Nine of Spades

Eight of Hearts Five of Hearts

 King of Spades Six of Clubs

Eight of Diamonds Ten of Spades

 Ace of Hearts King of Hearts

 Four of Spades Jack of Hearts

Deuce of Hearts Jack of Clubs

Deuce of Spades Ten of Diamonds

Seven of Spades Nine of Clubs

 King of Clubs Six of Diamonds

 Ten of Hearts King of Diamonds

http://www.uml.org/

		Four of Clubs Three of Hearts

Three of Diamonds Three of Spades

 Four of Diamonds Ace of Diamonds

 Nine of Hearts Ten of Clubs

Three of Clubs Four of Hearts

Eight of Clubs Nine of Diamonds

Deuce of Clubs Queen of Clubs

Seven of Clubs Jack of Spades

 Ace of Clubs Five of Diamonds

 Ace of Spades Five of Clubs

Seven of Diamonds Six of Spades

Eight of Spades Queen of Hearts

 Five of Spades Deuce of Diamonds

Queen of Spades Six of Hearts

Queen of Diamonds Seven of Hearts

 Jack of Diamonds Nine of Spades

Eight of Hearts Five of Hearts

 King of Spades Six of Clubs

Eight of Diamonds Ten of Spades

 Ace of Hearts King of Hearts

 Four of Spades Jack of Hearts

Deuce of Hearts Jack of Clubs

Deuce of Spades Ten of Diamonds

Seven of Spades Nine of Clubs

 King of Clubs Six of Diamonds

 Ten of Hearts King of Diamonds

 2007 Pearson Education, Inc. All rights reserved.

36

Common Programming Error 10.8

Forgetting to include the array subscript
when referring to individual structures in
an array of structures is a syntax error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

37

10.8 Unions
 union

– Memory that contains a variety of objects over time
– Only contains one data member at a time
– Members of a union share space
– Conserves storage
– Only the last data member defined can be accessed

 union definitions
– Same as struct

union Number {

int x;

float y;

};

union Number value;

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

38

10.8 Unions

Valid union operations
– Assignment to union of same type: =
– Taking address: &
– Accessing union members: .
– Accessing members using pointers: ->

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

39

Common Programming Error 10.9

Referencing data in a union with a
variable of the wrong type is a logic error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

40

Portability Tip 10.3

If data is stored in a union as one type and
referenced as another type, the results are
implementation dependent.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

41

Software Engineering Observation 10.1

As with a struct definition, a union
definition simply creates a new type. Placing
a union or struct definition outside any
function does not create a global variable.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

42

Common Programming Error 10.10

Comparing unions is a syntax error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

43

Portability Tip 10.4

The amount of storage required to store a
union is implementation dependent but will
always be at least as large as the largest
member of the union.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

44

Portability Tip 10.5

Some unions may not port easily to other
computer systems. Whether a union is portable
or not often depends on the storage alignment
requirements for the union member data types
on a given system.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

45

Performance Tip 10.2

Unions conserve storage.

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

46 1 /* Fig. 10.5: fig10_05.c

 2 An example of a union */

 3 #include <stdio.h>

 4
 5 /* number union definition */

 6 union number {

 7 int x;

 8 double y;

 9 }; /* end union number */

10
11 int main(void)
12 {
13 union number value; /* define union variable */
14
15 value.x = 100; /* put an integer into the union */
16 printf("%s\n%s\n%s\n %d\n\n%s\n %f\n\n\n",
17 "Put a value in the integer member",
18 "and print both members.",
19 "int:", value.x,
20 "double:", value.y);
21

Outline

fig10_05.c

(1 of 2)

Union definition

Union definition must end with semicolon

Note that y has no value

http://www.uml.org/

		
1
/* Fig. 10.5: fig10_05.c

		
2
 An example of a union */

		
3
#include <stdio.h>

		
4

		
5
/* number union definition */

		
6
union number {

		
7
 int x;

		
8
 double y;

		
9
}; /* end union number */

		
10

		
11
int main(void)

		
12
{

		
13
 union number value; /* define union variable */

		
14

		
15
 value.x = 100; /* put an integer into the union */

		
16
 printf("%s\n%s\n%s\n %d\n\n%s\n %f\n\n\n",

		
17
 "Put a value in the integer member",

		
18
 "and print both members.",

		
19
 "int:", value.x,

		
20
 "double:", value.y);

		
21

 2007 Pearson Education,
Inc. All rights reserved.

4722 value.y = 100.0; /* put a double into the same union */
23 printf("%s\n%s\n%s\n %d\n\n%s\n %f\n",
24 "Put a value in the floating member",
25 "and print both members.",
26 "int:", value.x,
27 "double:", value.y);
28
29 return 0; /* indicates successful termination */
30
31 } /* end main */

Put a value in the integer member
and print both members.
int:
 100

double:
 -92559592117433136000.000000

Put a value in the floating member
and print both members.
int:
 0

double:
 100.000000

Outline

fig10_05.c

(2 of 2)

Giving y a value removes x’s value

http://www.uml.org/

		
22
 value.y = 100.0; /* put a double into the same union */

		
23
 printf("%s\n%s\n%s\n %d\n\n%s\n %f\n",

		
24
 "Put a value in the floating member",

		
25
 "and print both members.",

		
26
 "int:", value.x,

		
27
 "double:", value.y);

		
28

		
29
 return 0; /* indicates successful termination */

		
30

		
31
} /* end main */

		Put a value in the integer member

and print both members.

int:

 100

double:

 -92559592117433136000.000000

Put a value in the floating member

and print both members.

int:

 0

double:

 100.000000

 2007 Pearson Education, Inc. All rights reserved.

48

10.9 Bitwise Operators

All data is represented internally as sequences of
bits

– Each bit can be either 0 or 1
– Sequence of 8 bits forms a byte

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

49

Portability Tip 10.6

Bitwise data manipulations are machine
dependent.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

50

 Operator Description

 & bitwise AND The bits in the result are set to 1 if the corresponding bits
in the two operands are both 1 .

 | bitwise inclusive
OR

The bits in the result are set to 1 if at least one of the corresponding bits
in the two operands is 1.

 ^ bitwise exclusive
OR

The bits in the result are set to 1 if exactly one of the corresponding bits
in the two operands is 1.

 << left shift Shifts the bits of the first operand left by the number of bits specified by
the second operand; fill from the right with 0 bits.

 >> right shift Shifts the bits of the first operand right by the number of bits specified by
the second operand; the method of filling from the left is machine
dependent.

 ~ one’s complement All 0 bits are set to 1 and all 1 bits are set to 0.

Fig. 10.6 | Bitwise operators.

http://www.uml.org/

		
Operator

		Description

		 & bitwise AND

		The bits in the result are set to 1 if the corresponding bits

in the two operands are both 1 .

		
|

		bitwise inclusive OR

		The bits in the result are set to 1 if at least one of the corresponding bits in the two operands is 1.

		
^

		bitwise exclusive OR

		The bits in the result are set to 1 if exactly one of the corre​sponding bits in the two operands is 1.

		
<<

		left shift

		Shifts the bits of the first operand left by the number of bits specified by the second operand; fill from the right with 0 bits.

		
>>

		right shift

		Shifts the bits of the first operand right by the number of bits specified by the second operand; the method of fill​ing from the left is machine dependent.

		
~

		one’s complement

		All 0 bits are set to 1 and all 1 bits are set to 0.

 2007 Pearson Education,
Inc. All rights reserved.

51 1 /* Fig. 10.7: fig10_07.c

 2 Printing an unsigned integer in bits */

 3 #include <stdio.h>

 4
 5 void displayBits(unsigned value); /* prototype */

 6
 7 int main(void)

 8 {

 9 unsigned x; /* variable to hold user input */

10
11 printf("Enter an unsigned integer: ");
12 scanf("%u", &x);
13
14 displayBits(x);
15
16 return 0; /* indicates successful termination */
17
18 } /* end main */
19

Outline

fig10_07.c

(1 of 2)

http://www.uml.org/

		
1
/* Fig. 10.7: fig10_07.c

		
2
 Printing an unsigned integer in bits */

		
3
#include <stdio.h>

		
4

		
5
void displayBits(unsigned value); /* prototype */

		
6

		
7
int main(void)

		
8
{

		
9
 unsigned x; /* variable to hold user input */

		
10

		
11
 printf("Enter an unsigned integer: ");

		
12
 scanf("%u", &x);

		
13

		
14
 displayBits(x);

		
15

		
16
 return 0; /* indicates successful termination */

		
17

		
18
} /* end main */

		
19

 2007 Pearson Education,
Inc. All rights reserved.

5220 /* display bits of an unsigned integer value */
21 void displayBits(unsigned value)
22 {
23 unsigned c; /* counter */
24
25 /* define displayMask and left shift 31 bits */
26 unsigned displayMask = 1 << 31;
27
28 printf("%10u = ", value);
29
30 /* loop through bits */
31 for (c = 1; c <= 32; c++) {
32 putchar(value & displayMask ? '1' : '0');
33 value <<= 1; /* shift value left by 1 */
34
35 if (c % 8 == 0) { /* output space after 8 bits */
36 putchar(' ');
37 } /* end if */
38
39 } /* end for */
40
41 putchar('\n');
42 } /* end function displayBits */

Enter an unsigned integer: 65000
 65000 = 00000000 00000000 11111101 11101000

Outline

fig10_07.c

(2 of 2)displayMask is a 1 followed by 31 zeros

Bitwise AND returns nonzero if the leftmost bits
of displayMask and value are both 1,
since all other bits in displayMask are 0s.

http://www.uml.org/

		
20
/* display bits of an unsigned integer value */

		
21
void displayBits(unsigned value)

		
22
{

		
23
 unsigned c; /* counter */

		
24

		
25
 /* define displayMask and left shift 31 bits */

		
26
 unsigned displayMask = 1 << 31;

		
27

		
28
 printf("%10u = ", value);

		
29

		
30
 /* loop through bits */

		
31
 for (c = 1; c <= 32; c++) {

		
32
 putchar(value & displayMask ? '1' : '0');

		
33
 value <<= 1; /* shift value left by 1 */

		
34

		
35
 if (c % 8 == 0) { /* output space after 8 bits */

		
36
 putchar(' ');

		
37
 } /* end if */

		
38

		
39
 } /* end for */

		
40

		
41
 putchar('\n');

		
42
} /* end function displayBits */

		Enter an unsigned integer: 65000

 65000 = 00000000 00000000 11111101 11101000

 2007 Pearson Education, Inc. All rights reserved.

53

Common Programming Error 10.11

Using the logical AND operator (&&) for the
bitwise AND operator (&) and vice versa is
an error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

54

Fig. 10.8 | Results of combining two bits with the bitwise AND operator &.

 Bit 1 Bit 2 Bit 1 & Bit 2

 0 0 0

 1 0 0

 0 1 0

 1 1 1

http://www.uml.org/

		
Bit 1

		Bit 2

		Bit 1 & Bit 2

		
0

		0

		0

		
1

		0

		0

		
0

		1

		0

		
1

		1

		1

 2007 Pearson Education, Inc. All rights reserved.

55

Fig. 10.11 | Results of combining two bits with the bitwise inclusive OR operator |.

 Bit 1 Bit 2 Bit 1 | Bit 2

 0 0 0

 1 0 1

 0 1 1

 1 1 1

http://www.uml.org/

		
Bit 1

		Bit 2

		Bit 1 | Bit 2

		
0

		0

		0

		
1

		0

		1

		
0

		1

		1

		
1

		1

		1

 2007 Pearson Education, Inc. All rights reserved.

56

Fig. 10.12 | Results of combining two bits with the bitwise exclusive OR operator ^.

 Bit 1 Bit 2 Bit 1 ^ Bit 2

 0 0 0

 1 0 1

 0 1 1

 1 1 0

http://www.uml.org/

		
Bit 1

		Bit 2

		Bit 1 ^ Bit 2

		
0

		0

		0

		
1

		0

		1

		
0

		1

		1

		
1

		1

		0

 2007 Pearson Education,
Inc. All rights reserved.

57 1 /* Fig. 10.9: fig10_09.c

 2 Using the bitwise AND, bitwise inclusive OR, bitwise

 3 exclusive OR and bitwise complement operators */

 4 #include <stdio.h>

 5
 6 void displayBits(unsigned value); /* prototype */

 7
 8 int main(void)

 9 {

10 unsigned number1;
11 unsigned number2;
12 unsigned mask;
13 unsigned setBits;
14
15 /* demonstrate bitwise AND (&) */
16 number1 = 65535;
17 mask = 1;
18 printf("The result of combining the following\n");
19 displayBits(number1);
20 displayBits(mask);
21 printf("using the bitwise AND operator & is\n");
22 displayBits(number1 & mask);
23

Outline

fig10_09.c

(1 of 3)

Bitwise AND sets each bit in the result to 1 if the
corresponding bits in the operands are both 1

http://www.uml.org/

		
1
/* Fig. 10.9: fig10_09.c

		
2
 Using the bitwise AND, bitwise inclusive OR, bitwise

		
3
 exclusive OR and bitwise complement operators */

		
4
#include <stdio.h>

		
5

		
6
void displayBits(unsigned value); /* prototype */

		
7

		
8
int main(void)

		
9
{

		
10
 unsigned number1;

		
11
 unsigned number2;

		
12
 unsigned mask;

		
13
 unsigned setBits;

		
14

		
15
 /* demonstrate bitwise AND (&) */

		
16
 number1 = 65535;

		
17
 mask = 1;

		
18
 printf("The result of combining the following\n");

		
19
 displayBits(number1);

		
20
 displayBits(mask);

		
21
 printf("using the bitwise AND operator & is\n");

		
22
 displayBits(number1 & mask);

		
23

 2007 Pearson Education,
Inc. All rights reserved.

5824 /* demonstrate bitwise inclusive OR (|) */
25 number1 = 15;
26 setBits = 241;
27 printf("\nThe result of combining the following\n");
28 displayBits(number1);
29 displayBits(setBits);
30 printf("using the bitwise inclusive OR operator | is\n");
31 displayBits(number1 | setBits);
32
33 /* demonstrate bitwise exclusive OR (^) */
34 number1 = 139;
35 number2 = 199;
36 printf("\nThe result of combining the following\n");
37 displayBits(number1);
38 displayBits(number2);
39 printf("using the bitwise exclusive OR operator ^ is\n");
40 displayBits(number1 ^ number2);
41
42 /* demonstrate bitwise complement (~)*/
43 number1 = 21845;
44 printf("\nThe one's complement of\n");
45 displayBits(number1);
46 printf("is\n");
47 displayBits(~number1);
48
49 return 0; /* indicates successful termination */
50 } /* end main */
51

Outline

fig10_09.c

(2 of 3)

Bitwise inclusive OR sets each bit in the result to 1 if at
least one of the corresponding bits in the operands is 1

Bitwise exclusive OR sets each bit in the result to 1 if
only one of the corresponding bits in the operands is 1

Complement operator sets each bit in the result to 0 if the
corresponding bit in the operand is 1 and vice versa

http://www.uml.org/

		
24
 /* demonstrate bitwise inclusive OR (|) */

		
25
 number1 = 15;

		
26
 setBits = 241;

		
27
 printf("\nThe result of combining the following\n");

		
28
 displayBits(number1);

		
29
 displayBits(setBits);

		
30
 printf("using the bitwise inclusive OR operator | is\n");

		
31
 displayBits(number1 | setBits);

		
32

		
33
 /* demonstrate bitwise exclusive OR (^) */

		
34
 number1 = 139;

		
35
 number2 = 199;

		
36
 printf("\nThe result of combining the following\n");

		
37
 displayBits(number1);

		
38
 displayBits(number2);

		
39
 printf("using the bitwise exclusive OR operator ^ is\n");

		
40
 displayBits(number1 ^ number2);

		
41

		
42
 /* demonstrate bitwise complement (~)*/

		
43
 number1 = 21845;

		
44
 printf("\nThe one's complement of\n");

		
45
 displayBits(number1);

		
46
 printf("is\n");

		
47
 displayBits(~number1);

		
48

		
49
 return 0; /* indicates successful termination */

		
50
} /* end main */

		
51

 2007 Pearson Education,
Inc. All rights reserved.

5952 /* display bits of an unsigned integer value */
53 void displayBits(unsigned value)
54 {
55 unsigned c; /* counter */
56
57 /* declare displayMask and left shift 31 bits */
58 unsigned displayMask = 1 << 31;
59
60 printf("%10u = ", value);
61
62 /* loop through bits */
63 for (c = 1; c <= 32; c++) {
64 putchar(value & displayMask ? '1' : '0');
65 value <<= 1; /* shift value left by 1 */
66
67 if (c % 8 == 0) { /* output a space after 8 bits */
68 putchar(' ');
69 } /* end if */
70
71 } /* end for */
72
73 putchar('\n');
74 } /* end function displayBits */

Outline

fig10_09.c

(3 of 3)

http://www.uml.org/

		
52
/* display bits of an unsigned integer value */

		
53
void displayBits(unsigned value)

		
54
{

		
55
 unsigned c; /* counter */

		
56

		
57
 /* declare displayMask and left shift 31 bits */

		
58
 unsigned displayMask = 1 << 31;

		
59

		
60
 printf("%10u = ", value);

		
61

		
62
 /* loop through bits */

		
63
 for (c = 1; c <= 32; c++) {

		
64
 putchar(value & displayMask ? '1' : '0');

		
65
 value <<= 1; /* shift value left by 1 */

		
66

		
67
 if (c % 8 == 0) { /* output a space after 8 bits */

		
68
 putchar(' ');

		
69
 } /* end if */

		
70

		
71
 } /* end for */

		
72

		
73
 putchar('\n');

		
74
} /* end function displayBits */

 2007 Pearson Education,
Inc. All rights reserved.

60
Outline

fig10_10.c

The result of combining the following
 65535 = 00000000 00000000 11111111 11111111
 1 = 00000000 00000000 00000000 00000001
using the bitwise AND operator & is
 1 = 00000000 00000000 00000000 00000001

The result of combining the following
 15 = 00000000 00000000 00000000 00001111
 241 = 00000000 00000000 00000000 11110001
using the bitwise inclusive OR operator | is
 255 = 00000000 00000000 00000000 11111111

The result of combining the following
 139 = 00000000 00000000 00000000 10001011
 199 = 00000000 00000000 00000000 11000111
using the bitwise exclusive OR operator ^ is
 76 = 00000000 00000000 00000000 01001100

The one's complement of
 21845 = 00000000 00000000 01010101 01010101
is
4294945450 = 11111111 11111111 10101010 10101010

http://www.uml.org/

		The result of combining the following

 65535 = 00000000 00000000 11111111 11111111

 1 = 00000000 00000000 00000000 00000001

using the bitwise AND operator & is

 1 = 00000000 00000000 00000000 00000001

The result of combining the following

 15 = 00000000 00000000 00000000 00001111

 241 = 00000000 00000000 00000000 11110001

using the bitwise inclusive OR operator | is

 255 = 00000000 00000000 00000000 11111111

The result of combining the following

 139 = 00000000 00000000 00000000 10001011

 199 = 00000000 00000000 00000000 11000111

using the bitwise exclusive OR operator ^ is

 76 = 00000000 00000000 00000000 01001100

The one's complement of

 21845 = 00000000 00000000 01010101 01010101

is

4294945450 = 11111111 11111111 10101010 10101010

 2007 Pearson Education, Inc. All rights reserved.

61

Common Programming Error 10.12

Using the logical OR operator (||) for the
bitwise OR operator (|) and vice versa is an
error.

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

62 1 /* Fig. 10.13: fig10_13.c

 2 Using the bitwise shift operators */

 3 #include <stdio.h>

 4
 5 void displayBits(unsigned value); /* prototype */

 6
 7 int main(void)

 8 {

 9 unsigned number1 = 960; /* initialize number1 */

10
11 /* demonstrate bitwise left shift */
12 printf("\nThe result of left shifting\n");
13 displayBits(number1);
14 printf("8 bit positions using the ");
15 printf("left shift operator << is\n");
16 displayBits(number1 << 8);
17

Outline

fig10_13.c

(1 of 3)

Left shift operator shifts all bits left a specified
number of spaces, filling in zeros for the empty bits

http://www.uml.org/

		
1
/* Fig. 10.13: fig10_13.c

		
2
 Using the bitwise shift operators */

		
3
#include <stdio.h>

		
4

		
5
void displayBits(unsigned value); /* prototype */

		
6

		
7
int main(void)

		
8
{

		
9
 unsigned number1 = 960; /* initialize number1 */

		
10

		
11
 /* demonstrate bitwise left shift */

		
12
 printf("\nThe result of left shifting\n");

		
13
 displayBits(number1);

		
14
 printf("8 bit positions using the ");

		
15
 printf("left shift operator << is\n");

		
16
 displayBits(number1 << 8);

		
17

 2007 Pearson Education,
Inc. All rights reserved.

6318 /* demonstrate bitwise right shift */
19 printf("\nThe result of right shifting\n");
20 displayBits(number1);
21 printf("8 bit positions using the ");
22 printf("right shift operator >> is\n");
23 displayBits(number1 >> 8);
24
25 return 0; /* indicates successful termination */
26 } /* end main */
27
28 /* display bits of an unsigned integer value */
29 void displayBits(unsigned value)
30 {
30 {
31 unsigned c; /* counter */
32
33 /* declare displayMask and left shift 31 bits */
34 unsigned displayMask = 1 << 31;
35
36 printf("%7u = ", value);
37

Outline

fig10_13.c

(2 of 3)

Right shift operator shifts all bits right a specified
number of spaces, filling in the empty bits in
an implementation-defined manner

http://www.uml.org/

		
18
 /* demonstrate bitwise right shift */

		
19
 printf("\nThe result of right shifting\n");

		
20
 displayBits(number1);

		
21
 printf("8 bit positions using the ");

		
22
 printf("right shift operator >> is\n");

		
23
 displayBits(number1 >> 8);

		
24

		
25
 return 0; /* indicates successful termination */

		
26
} /* end main */

		
27

		
28
/* display bits of an unsigned integer value */

		
29
void displayBits(unsigned value)

		
30
{

		
30
{

		
31
 unsigned c; /* counter */

		
32

		
33
 /* declare displayMask and left shift 31 bits */

		
34
 unsigned displayMask = 1 << 31;

		
35

		
36
 printf("%7u = ", value);

		
37

 2007 Pearson Education,
Inc. All rights reserved.

6438 /* loop through bits */
39 for (c = 1; c <= 32; c++) {
40 putchar(value & displayMask ? '1' : '0');
41 value <<= 1; /* shift value left by 1 */
42
43 if (c % 8 == 0) { /* output a space after 8 bits */
44 putchar(' ');
45 } /* end if */
46
47 } /* end for */
48
49 putchar('\n');
50 } /* end function displayBits */

The result of left shifting
 960 = 00000000 00000000 00000011 11000000
8 bit positions using the left shift operator << is
 245760 = 00000000 00000011 11000000 00000000

The result of right shifting
 960 = 00000000 00000000 00000011 11000000
8 bit positions using the right shift operator >> is
 3 = 00000000 00000000 00000000 00000011

Outline

fig10_13.c

(3 of 3)

http://www.uml.org/

		
38
 /* loop through bits */

		
39
 for (c = 1; c <= 32; c++) {

		
40
 putchar(value & displayMask ? '1' : '0');

		
41
 value <<= 1; /* shift value left by 1 */

		
42

		
43
 if (c % 8 == 0) { /* output a space after 8 bits */

		
44
 putchar(' ');

		
45
 } /* end if */

		
46

		
47
 } /* end for */

		
48

		
49
 putchar('\n');

		
50
} /* end function displayBits */

		The result of left shifting

 960 = 00000000 00000000 00000011 11000000

8 bit positions using the left shift operator << is

 245760 = 00000000 00000011 11000000 00000000

The result of right shifting

 960 = 00000000 00000000 00000011 11000000

8 bit positions using the right shift operator >> is

 3 = 00000000 00000000 00000000 00000011

 2007 Pearson Education, Inc. All rights reserved.

65

Common Programming Error 10.13

The result of shifting a value is undefined if the
right operand is negative or if the right operand
is larger than the number of bits in which the
left operand is stored.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

66

Portability Tip 10.7

Right shifting is machine dependent. Right
shifting a signed integer fills the vacated bits
with 0s on some machines and with 1s on
others.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

67

Fig. 10.14 | The bitwise assignment operators.

 Bitwise assignment operators
 &= Bitwise AND assignment operator.
 |= Bitwise inclusive OR assignment operator.
 ^= Bitwise exclusive OR assignment operator.
 <<= Left-shift assignment operator.
 >>= Right-shift assignment operator.

http://www.uml.org/

		
Bitwise assignment operators

		
&=

		Bitwise AND assignment operator.

		
|=

		Bitwise inclusive OR assignment operator.

		
^=

		Bitwise exclusive OR assignment operator.

		
<<=

		Left-shift assignment operator.

		
>>=

		Right-shift assignment operator.

 2007 Pearson Education, Inc. All rights reserved.

68

 Operators Associativity Type

 () [] . -> left to right highest

 + - ++ -- ! & * ~ sizeof (type) right to left unary

 * / % left to right multiplicative

 + - left to right additive

 << >> left to right shiting

 < <= > >= left to right relational

 == != left to right equality

 & left to right bitwise AND

Fig. 10.15 | Operator precedence and associativity. (Part 1 of 2.)

http://www.uml.org/

		 Operators

 Associativity Type

		 ()

		[]

		 .

		 ->

		

		

		

		

		

		

		left to right

		
highest

		
+

 - ++

		-

		++

		--

		!

		&

		*

		~

		sizeof

		 (type)

		right to left

		
unary

		 *

		/

		%

		

		

		

		

		

		

		

		left to right

		
multiplicative

		 +

		-

		

		

		

		

		

		

		

		

		left to right

		
additive

		 <<

		>>

		

		

		

		

		

		

		

		

		left to right

		 shiting

		 <

		<=

		>

		>=

		

		

		

		

		

		

		left to right

		
relational

		 ==

		!=

		

		

		

		

		

		

		

		

		left to right

		
equality

		 &

		

		

		

		

		

		

		

		

		

		left to right

		
bitwise AND

 2007 Pearson Education, Inc. All rights reserved.

69

 Operators Associativity Type

 ^ left to right bitwise OR

 | left to right bitwise OR

 && left to right logical AND

 || left to right logical OR

 ?: right to left conditional

 = += -= *= /= &= |= ^= <<= >>= %= right to left assignment

 , left to right comma

Fig. 10.15 | Operator precedence and associativity. (Part 2 of 2.)

http://www.uml.org/

		 Operators

 Associativity Type

		 ^

		

		

		

		

		

		

		

		

		

		left to right

		 bitwise OR

		 |

		

		

		

		

		

		

		

		

		

		left to right

		 bitwise OR

		 &&

		

		

		

		

		

		

		

		

		

		left to right

		 logical AND

		 ||

		

		

		

		

		

		

		

		

		

		left to right

		
logical OR

		 ?:

		

		

		

		

		

		

		

		

		

		right to left

		
conditional

		 =

		+=

		-=

		*=

		/=

		&=

		|=

		^=

		<<= >>= %=

		right to left

		
assignment

		 ,

		

		

		

		

		

		

		

		

		

		left to right

		
comma

 2007 Pearson Education, Inc. All rights reserved.

70

10.10 Bit Fields
 Bit field

– Member of a structure whose size (in bits) has been specified
– Enable better memory utilization
– Must be defined as int or unsigned
– Cannot access individual bits

 Defining bit fields
– Follow unsigned or int member with a colon (:) and an integer

constant representing the width of the field
– Example:

struct BitCard {

unsigned face : 4;

unsigned suit : 2;

unsigned color : 1;

};

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

71

10.10 Bit Fields

Unnamed bit field
– Field used as padding in the structure
– Nothing may be stored in the bits

struct Example {

unsigned a : 13;

unsigned : 3;

unsigned b : 4;

}

– Unnamed bit field with zero width aligns next bit field to a
new storage unit boundary

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

72

Performance Tip 10.3

Bit fields help conserve storage.

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

73 1 /* Fig. 10.16: fig10_16.c

 2 Representing cards with bit fields in a struct */

 3
 4 #include <stdio.h>

 5
 6 /* bitCard structure definition with bit fields */

 7 struct bitCard {

 8 unsigned face : 4; /* 4 bits; 0-15 */

 9 unsigned suit : 2; /* 2 bits; 0-3 */

10 unsigned color : 1; /* 1 bit; 0-1 */
11 }; /* end struct bitCard */
12
13 typedef struct bitCard Card; /* new type name for struct bitCard */
14
15 void fillDeck(Card * const wDeck); /* prototype */
16 void deal(const Card * const wDeck); /* prototype */
17
18 int main(void)
19 {
20 Card deck[52]; /* create array of Cards */
21
22 fillDeck(deck);
23 deal(deck);
24
25 return 0; /* indicates successful termination */
26
27 } /* end main */
28

Outline

fig10_16.c

(1 of 2)

Bit fields determine how much memory
each member of a structure can take up

http://www.uml.org/

		
1
/* Fig. 10.16: fig10_16.c

		
2
 Representing cards with bit fields in a struct */

		
3

		
4
#include <stdio.h>

		
5

		
6
/* bitCard structure definition with bit fields */

		
7
struct bitCard {

		
8
 unsigned face : 4; /* 4 bits; 0-15 */

		
9
 unsigned suit : 2; /* 2 bits; 0-3 */

		
10
 unsigned color : 1; /* 1 bit; 0-1 */

		
11
}; /* end struct bitCard */

		
12

		
13
typedef struct bitCard Card; /* new type name for struct bitCard */

		
14

		
15
void fillDeck(Card * const wDeck); /* prototype */

		
16
void deal(const Card * const wDeck); /* prototype */

		
17

		
18
int main(void)

		
19
{

		
20
 Card deck[52]; /* create array of Cards */

		
21

		
22
 fillDeck(deck);

		
23
 deal(deck);

		
24

		
25
 return 0; /* indicates successful termination */

		
26

		
27
} /* end main */

		
28

 2007 Pearson Education,
Inc. All rights reserved.

7429 /* initialize Cards */
30 void fillDeck(Card * const wDeck)
31 {
32 int i; /* counter */
33
34 /* loop through wDeck */
35 for (i = 0; i <= 51; i++) {
36 wDeck[i].face = i % 13;
37 wDeck[i].suit = i / 13;
38 wDeck[i].color = i / 26;
39 } /* end for */
40
41 } /* end function fillDeck */
42
43 /* output cards in two column format; cards 0-25 subscripted with
44 k1 (column 1); cards 26-51 subscripted k2 (column 2) */
45 void deal(const Card * const wDeck)
46 {
47 int k1; /* subscripts 0-25 */
48 int k2; /* subscripts 26-51 */
49
50 /* loop through wDeck */
51 for (k1 = 0, k2 = k1 + 26; k1 <= 25; k1++, k2++) {
52 printf("Card:%3d Suit:%2d Color:%2d ",
53 wDeck[k1].face, wDeck[k1].suit, wDeck[k1].color);
54 printf("Card:%3d Suit:%2d Color:%2d\n",
55 wDeck[k2].face, wDeck[k2].suit, wDeck[k2].color);
56 } /* end for */
57
58 } /* end function deal */

Outline

fig10_16.c

(2 of 2)

http://www.uml.org/

		
29
/* initialize Cards */

		
30
void fillDeck(Card * const wDeck)

		
31
{

		
32
 int i; /* counter */

		
33

		
34
 /* loop through wDeck */

		
35
 for (i = 0; i <= 51; i++) {

		
36
 wDeck[i].face = i % 13;

		
37
 wDeck[i].suit = i / 13;

		
38
 wDeck[i].color = i / 26;

		
39
 } /* end for */

		
40

		
41
} /* end function fillDeck */

		
42

		
43
/* output cards in two column format; cards 0-25 subscripted with

		
44
 k1 (column 1); cards 26-51 subscripted k2 (column 2) */

		
45
void deal(const Card * const wDeck)

		
46
{

		
47
 int k1; /* subscripts 0-25 */

		
48
 int k2; /* subscripts 26-51 */

		
49

		
50
 /* loop through wDeck */

		
51
 for (k1 = 0, k2 = k1 + 26; k1 <= 25; k1++, k2++) {

		
52
 printf("Card:%3d Suit:%2d Color:%2d ",

		
53
 wDeck[k1].face, wDeck[k1].suit, wDeck[k1].color);

		
54
 printf("Card:%3d Suit:%2d Color:%2d\n",

		
55
 wDeck[k2].face, wDeck[k2].suit, wDeck[k2].color);

		
56
 } /* end for */

		
57

		
58
} /* end function deal */

 2007 Pearson Education,
Inc. All rights reserved.

75
Outline

Card: 0 Suit: 0 Color: 0 Card: 0 Suit: 2 Color: 1
Card: 1 Suit: 0 Color: 0 Card: 1 Suit: 2 Color: 1
Card: 2 Suit: 0 Color: 0 Card: 2 Suit: 2 Color: 1
Card: 3 Suit: 0 Color: 0 Card: 3 Suit: 2 Color: 1
Card: 4 Suit: 0 Color: 0 Card: 4 Suit: 2 Color: 1
Card: 5 Suit: 0 Color: 0 Card: 5 Suit: 2 Color: 1
Card: 6 Suit: 0 Color: 0 Card: 6 Suit: 2 Color: 1
Card: 7 Suit: 0 Color: 0 Card: 7 Suit: 2 Color: 1
Card: 8 Suit: 0 Color: 0 Card: 8 Suit: 2 Color: 1
Card: 9 Suit: 0 Color: 0 Card: 9 Suit: 2 Color: 1
Card: 10 Suit: 0 Color: 0 Card: 10 Suit: 2 Color: 1
Card: 11 Suit: 0 Color: 0 Card: 11 Suit: 2 Color: 1
Card: 12 Suit: 0 Color: 0 Card: 12 Suit: 2 Color: 1
Card: 0 Suit: 1 Color: 0 Card: 0 Suit: 3 Color: 1
Card: 1 Suit: 1 Color: 0 Card: 1 Suit: 3 Color: 1
Card: 2 Suit: 1 Color: 0 Card: 2 Suit: 3 Color: 1
Card: 3 Suit: 1 Color: 0 Card: 3 Suit: 3 Color: 1
Card: 4 Suit: 1 Color: 0 Card: 4 Suit: 3 Color: 1
Card: 5 Suit: 1 Color: 0 Card: 5 Suit: 3 Color: 1
Card: 6 Suit: 1 Color: 0 Card: 6 Suit: 3 Color: 1
Card: 7 Suit: 1 Color: 0 Card: 7 Suit: 3 Color: 1
Card: 8 Suit: 1 Color: 0 Card: 8 Suit: 3 Color: 1
Card: 9 Suit: 1 Color: 0 Card: 9 Suit: 3 Color: 1
Card: 10 Suit: 1 Color: 0 Card: 10 Suit: 3 Color: 1
Card: 11 Suit: 1 Color: 0 Card: 11 Suit: 3 Color: 1
Card: 12 Suit: 1 Color: 0 Card: 12 Suit: 3 Color: 1

http://www.uml.org/

		Card: 0 Suit: 0 Color: 0 Card: 0 Suit: 2 Color: 1

Card: 1 Suit: 0 Color: 0 Card: 1 Suit: 2 Color: 1

Card: 2 Suit: 0 Color: 0 Card: 2 Suit: 2 Color: 1

Card: 3 Suit: 0 Color: 0 Card: 3 Suit: 2 Color: 1

Card: 4 Suit: 0 Color: 0 Card: 4 Suit: 2 Color: 1

Card: 5 Suit: 0 Color: 0 Card: 5 Suit: 2 Color: 1

Card: 6 Suit: 0 Color: 0 Card: 6 Suit: 2 Color: 1

Card: 7 Suit: 0 Color: 0 Card: 7 Suit: 2 Color: 1

Card: 8 Suit: 0 Color: 0 Card: 8 Suit: 2 Color: 1

Card: 9 Suit: 0 Color: 0 Card: 9 Suit: 2 Color: 1

Card: 10 Suit: 0 Color: 0 Card: 10 Suit: 2 Color: 1

Card: 11 Suit: 0 Color: 0 Card: 11 Suit: 2 Color: 1

Card: 12 Suit: 0 Color: 0 Card: 12 Suit: 2 Color: 1

Card: 0 Suit: 1 Color: 0 Card: 0 Suit: 3 Color: 1

Card: 1 Suit: 1 Color: 0 Card: 1 Suit: 3 Color: 1

Card: 2 Suit: 1 Color: 0 Card: 2 Suit: 3 Color: 1

Card: 3 Suit: 1 Color: 0 Card: 3 Suit: 3 Color: 1

Card: 4 Suit: 1 Color: 0 Card: 4 Suit: 3 Color: 1

Card: 5 Suit: 1 Color: 0 Card: 5 Suit: 3 Color: 1

Card: 6 Suit: 1 Color: 0 Card: 6 Suit: 3 Color: 1

Card: 7 Suit: 1 Color: 0 Card: 7 Suit: 3 Color: 1

Card: 8 Suit: 1 Color: 0 Card: 8 Suit: 3 Color: 1

Card: 9 Suit: 1 Color: 0 Card: 9 Suit: 3 Color: 1

Card: 10 Suit: 1 Color: 0 Card: 10 Suit: 3 Color: 1

Card: 11 Suit: 1 Color: 0 Card: 11 Suit: 3 Color: 1

Card: 12 Suit: 1 Color: 0 Card: 12 Suit: 3 Color: 1

 2007 Pearson Education, Inc. All rights reserved.

76

Portability Tip 10.8

Bit-field manipulations are machine dependent.
For example, some computers allow bit fields to
cross word boundaries, whereas others do not.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

77

Common Programming Error 10.14

Attempting to access individual bits of a bit
field as if they were elements of an array is a
syntax error. Bit fields are not “arrays of bits.”

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

78

Common Programming Error 10.15

Attempting to take the address of a bit field
(the & operator may not be used with bit fields
because they do not have addresses).

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

79

Performance Tip 10.4

Although bit fields save space, using them can
cause the compiler to generate slower-executing
machine-language code. This occurs because it
takes extra machine language operations to
access only portions of an addressable storage
unit. This is one of many examples of the kinds
of space–time trade-offs that occur in computer
science.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

80

10.11 Enumeration Constants
 Enumeration

– Set of integer constants represented by identifiers
– Enumeration constants are like symbolic constants whose values

are automatically set
- Values start at 0 and are incremented by 1
- Values can be set explicitly with =
- Need unique constant names

– Example:
enum Months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,

OCT, NOV, DEC};

- Creates a new type enum Months in which the identifiers are set to
the integers 1 to 12

– Enumeration variables can only assume their enumeration
constant values (not the integer representations)

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

81 1 /* Fig. 10.18: fig10_18.c

 2 Using an enumeration type */

 3 #include <stdio.h>

 4
 5 /* enumeration constants represent months of the year */

 6 enum months {

 7 JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };

 8
 9 int main(void)

10 {
11 enum months month; /* can contain any of the 12 months */
12
13 /* initialize array of pointers */
14 const char *monthName[] = { "", "January", "February", "March",
15 "April", "May", "June", "July", "August", "September", "October",
16 "November", "December" };
17

Outline

fig10_18.c

(1 of 2)Enumeration sets the value of constant JAN to 1
and the following constants to 2, 3, 4…

http://www.uml.org/

		
1
/* Fig. 10.18: fig10_18.c

		
2
 Using an enumeration type */

		
3
#include <stdio.h>

		
4

		
5
/* enumeration constants represent months of the year */

		
6
enum months {

		
7
 JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };

		
8

		
9
int main(void)

		
10
{

		
11
 enum months month; /* can contain any of the 12 months */

		
12

		
13
 /* initialize array of pointers */

		
14
 const char *monthName[] = { "", "January", "February", "March",

		
15
 "April", "May", "June", "July", "August", "September", "October",

		
16
 "November", "December" };

		
17

 2007 Pearson Education,
Inc. All rights reserved.

8218 /* loop through months */
19 for (month = JAN; month <= DEC; month++) {
20 printf("%2d%11s\n", month, monthName[month]);
21 } /* end for */
22
23 return 0; /* indicates successful termination */
24 } /* end main */

 1 January
 2 February
 3 March
 4 April
 5 May
 6 June
 7 July
 8 August
 9 September
10 October
11 November
12 December

Outline

fig10_18.c

(2 of 2)

Like symbolic constants, enumeration constants
are replaced by their values at compile time

http://www.uml.org/

		
18
 /* loop through months */

		
19
 for (month = JAN; month <= DEC; month++) {

		
20
 printf("%2d%11s\n", month, monthName[month]);

		
21
 } /* end for */

		
22

		
23
 return 0; /* indicates successful termination */

		
24
} /* end main */

		 1 January

 2 February

 3 March

 4 April

 5 May

 6 June

 7 July

 8 August

 9 September

10 October

11 November

12 December

 2007 Pearson Education, Inc. All rights reserved.

83

Common Programming Error 10.16

Assigning a value to an enumeration constant
after it has been defined is a syntax error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

84

Good Programming Practice 10.5

Use only uppercase letters in the names of
enumeration constants. This makes these
constants stand out in a program and
reminds you that enumeration constants
are not variables.

http://www.uml.org/

	10
	Slide Number 2
	OBJECTIVES
	Slide Number 4
	10.1 Introduction
	10.2 Structure Definitions
	Common Programming Error 10.1
	10.2 Structure Definitions
	Good Programming Practice 10.1
	Good Programming Practice 10.2
	10.2 Structure Definitions
	Common Programming Error 10.2
	Common Programming Error 10.3
	Slide Number 14
	Portability Tip 10.1
	10.3 Initializing Structures
	10.4 Accessing Members of Structures
	Error-Prevention Tip 10.1
	Good Programming Practice 10.3
	Common Programming Error 10.4
	Common Programming Error 10.5
	Common Programming Error 10.6
	Slide Number 23
	Slide Number 24
	10.5 Using Structures with Functions
	Common Programming Error 10.7
	Performance Tip 10.1
	10.6 typedef
	Good Programming Practice 10.4
	Portability Tip 10.2
	10.7 Example: High-Performance Card Shuffling and Dealing Simulation
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Common Programming Error 10.8
	10.8 Unions
	10.8 Unions
	Common Programming Error 10.9
	Portability Tip 10.3
	Software Engineering Observation 10.1
	Common Programming Error 10.10
	Portability Tip 10.4
	Portability Tip 10.5
	Performance Tip 10.2
	Slide Number 46
	Slide Number 47
	10.9 Bitwise Operators
	Portability Tip 10.6
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Common Programming Error 10.11
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Common Programming Error 10.12
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Common Programming Error 10.13
	Portability Tip 10.7
	Slide Number 67
	Slide Number 68
	Slide Number 69
	10.10 Bit Fields
	10.10 Bit Fields
	Performance Tip 10.3
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Portability Tip 10.8
	Common Programming Error 10.14
	Common Programming Error 10.15
	Performance Tip 10.4
	10.11 Enumeration Constants
	Slide Number 81
	Slide Number 82
	Common Programming Error 10.16
	Good Programming Practice 10.5

