
 2007 Pearson Education, Inc.  All rights reserved.

1

4
C Program

Control

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

2

Not everything that can be counted counts, and
not every thing that counts can be counted.

—Albert Einstein

Who can control his fate?
—William Shakespeare

The used key is always bright.
—Benjamin Franklin

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

3

Intelligence… is the faculty of making artificial 
objects, especially tools to make tools.

—Henri Bergson

Every advantage in the past is judged in the light
of the final issue. 

—Demosthenes

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

4

OBJECTIVES
In this chapter you will learn: 
 The essentials of counter-controlled repetition. 
 To use the for and do...while repetition statements to 

execute statements in a program repeatedly.
 To understand multiple selection using the switch

selection statement.
 To use the break and continue program control statements 

to alter the flow of control.
 To use the logical operators to form complex conditional 

expressions in control statements.
 To avoid the consequences of confusing the equality and 

assignment operators.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

5

4.1 Introduction 
4.2 Repetition Essentials
4.3 Counter-Controlled Repetition
4.4 for Repetition Statement
4.5 for Statement: Notes and Observations
4.6 Examples Using the for Statement
4.7 switch Multiple-Selection Statement
4.8 do...while Repetition Statement
4.9 break and continue Statements
4.10 Logical Operators
4.11 Confusing Equality (==) and Assignment (=) Operators
4.12 Structured Programming Summary

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

6

4.1 Introduction

This chapter introduces
– Additional repetition control structures

- for

- do…while

– switch multiple selection statement
– break statement

- Used for exiting immediately and rapidly from certain 
control structures

– continue statement
- Used for skipping the remainder of the body of a repetition 

structure and proceeding with the next iteration of the loop

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

7

4.2 Repetition Essentials

Loop
– Group of instructions computer executes repeatedly while 

some condition remains true

Counter-controlled repetition
– Definite repetition: know how many times loop will execute
– Control variable used to count repetitions

 Sentinel-controlled repetition
– Indefinite repetition
– Used when number of repetitions not known
– Sentinel value indicates "end of data"

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

8

4.3 Counter-Controlled Repetition

Counter-controlled repetition requires
– The name of a control variable (or loop counter)
– The initial value of the control variable
– An increment (or decrement) by which the control variable 

is modified each time through the loop
– A condition that tests for the final value of the control 

variable (i.e., whether looping should continue)

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

9

4.3 Counter-Controlled Repetition

Example:  
int counter = 1;          // initialization

while ( counter <= 10 ) { // repetition condition

printf( "%d\n", counter );

++counter;             // increment

}

– The statement
int counter = 1;

- Names counter
- Defines it to be an integer
- Reserves space for it in memory
- Sets it to an initial value of 1

http://www.uml.org/


 2007 Pearson Education, 
Inc.  All rights reserved.

10 1 /* Fig. 4.1: fig04_01.c 

 2    Counter-controlled repetition */ 

 3 #include <stdio.h> 

 4  
 5 /* function main begins program execution */ 

 6 int main( void ) 

 7 { 

 8    int counter = 1; /* initialization */ 

 9     
10    while ( counter <= 10 ) { /* repetition condition */ 
11       printf ( "%d\n", counter ); /* display counter */ 
12       ++counter; /* increment */ 
13    } /* end while */ 
14  
15    return 0; /* indicate program ended successfully */ 
16  
17 } /* end function main */ 
  
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
  

 

Outline

fig04_01.c

Definition and assignment are performed 
simultaneously

http://www.uml.org/

		
1
/* Fig. 4.1: fig04_01.c



		
2
   Counter-controlled repetition */



		
3
#include <stdio.h>



		
4




		
5
/* function main begins program execution */



		
6
int main( void )



		
7
{



		
8
   int counter = 1; /* initialization */



		
9
   



		
10
   while ( counter <= 10 ) { /* repetition condition */



		
11
      printf ( "%d\n", counter ); /* display counter */



		
12
      ++counter; /* increment */



		
13
   } /* end while */



		
14




		
15
   return 0; /* indicate program ended successfully */



		
16




		
17
} /* end function main */



		1


2


3


4


5


6


7


8


9


10


 







 2007 Pearson Education, Inc.  All rights reserved.

11

4.3 Counter-Controlled Repetition

Condensed code
– C Programmers would make the program more concise
– Initialize counter to 0

- while ( ++counter <= 10 )
printf( “%d\n, counter );

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

12

Common Programming Error 4.1

Because floating-point values may be 
approximate, controlling counting loops 
with floating-point variables may result in 
imprecise counter values and inaccurate 
tests for termination. 

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

13

Error-Prevention Tip 4.1

Control counting loops with integer values.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

14

Good Programming Practice 4.1

Indent the statements in the body of each 
control statement. 

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

15

Good Programming Practice 4.2

Put a blank line before and after each 
control statement to make it stand out in a 
program. 

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

16

Good Programming Practice 4.3

Too many levels of nesting can make a 
program difficult to understand. As a 
general rule, try to avoid using more than 
three levels of nesting. 

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

17

Good Programming Practice 4.4

The combination of vertical spacing before 
and after control statements and indentation 
of the bodies of control statements within the 
control-statement headers gives programs a 
two-dimensional appearance that greatly 
improves program readability. 

http://www.uml.org/


 2007 Pearson Education, 
Inc.  All rights reserved.

18 1 /* Fig. 4.2: fig04_02.c 

 2    Counter-controlled repetition with the for statement */ 

 3 #include <stdio.h> 

 4  
 5 /* function main begins program execution */ 

 6 int main( void ) 

 7 { 

 8    int counter; /* define counter */ 

 9  
10    /* initialization, repetition condition, and increment  
11       are all included in the for statement header. */ 
12    for ( counter = 1; counter <= 10; counter++ ) { 
13       printf( "%d\n", counter ); 
14    } /* end for */ 
15  
16    return 0; /* indicate program ended successfully */ 
17  
18 } /* end function main */ 

 

Outline

fig04_02.c

for loop begins by setting counter to 1 
and repeats while counter <= 10. 
Each time the end of the loop is reached, 
counter is incremented by 1.

http://www.uml.org/

		
1
/* Fig. 4.2: fig04_02.c



		
2
   Counter-controlled repetition with the for statement */



		
3
#include <stdio.h>



		
4




		
5
/* function main begins program execution */



		
6
int main( void )



		
7
{



		
8
   int counter; /* define counter */



		
9




		
10
   /* initialization, repetition condition, and increment 



		
11
      are all included in the for statement header. */



		
12
   for ( counter = 1; counter <= 10; counter++ ) {



		
13
      printf( "%d\n", counter );



		
14
   } /* end for */



		
15




		
16
   return 0; /* indicate program ended successfully */



		
17




		
18
} /* end function main */







 2007 Pearson Education, Inc.  All rights reserved.

19

Fig. 4.3 | for statement header components.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

20

Common Programming Error 4.2

Using an incorrect relational operator or 
using an incorrect initial or final value of a 
loop counter in the condition of a while or 
for statement can cause off-by-one errors. 

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

21

Error-Prevention Tip 4.2

Using the final value in the condition of a while
or for statement and using the <= relational 
operator will help avoid off-by-one errors. For a 
loop used to print the values 1 to 10, for 
example, the loop-continuation condition should 
be counter <= 10 rather than counter < 11
or counter < 10.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

22

4.4 for Repetition Statement

 Format when using for loops
for ( initialization; loopContinuationTest; increment ) 

statement

Example:  
for( int counter = 1; counter <= 10; counter++ )

printf( "%d\n", counter );

– Prints the integers from one to ten

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

23

4.4 for Repetition Statement

 For loops can usually be rewritten as while loops:
initialization;
while ( loopContinuationTest ) {

statement;
increment;

} 

 Initialization and increment 
– Can be comma-separated lists
– Example:

for (int i = 0, j = 0;  j + i <= 10; j++, 
i++)
printf( "%d\n", j + i );

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

24

Software Engineering Observation 4.1

Place only expressions involving the control 
variables in the initialization and increment 
sections of a for statement. Manipulations 
of other variables should appear either 
before the loop (if they execute only once, 
like initialization statements) or in the loop 
body (if they execute once per repetition, like 
incrementing or decrementing statements).

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

25

Common Programming Error 4.3

Using commas instead of semicolons in a 
for header is a syntax error.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

26

Common Programming Error 4.4

Placing a semicolon immediately to the 
right of a for header makes the body of 
that for statement an empty statement. 
This is normally a logic error.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

27

4.5 for Statement : Notes and 
Observations
 Arithmetic expressions

– Initialization, loop-continuation, and increment can contain 
arithmetic expressions.  If x equals 2 and y equals 10
for ( j = x; j <= 4 * x * y; j += y / x )

is equivalent to
for ( j = 2; j <= 80; j += 5 )

 Notes about the for statement:
– "Increment" may be negative (decrement)
– If the loop continuation condition is initially false

- The body of the for statement is not performed
- Control proceeds with the next statement after the for statement

– Control variable
- Often printed or used inside for body, but not necessary

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

28

Error-Prevention Tip 4.3

Although the value of the control variable 
can be changed in the body of a for loop, 
this can lead to subtle errors. It is best not 
to change it. 

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

29

Fig. 4.4 | Flowcharting a typical for repetition statement.

http://www.uml.org/


 2007 Pearson Education, 
Inc.  All rights reserved.

30 1 /* Fig. 4.5: fig04_05.c   

 2    Summation with for */ 

 3 #include <stdio.h> 

 4  
 5 /* function main begins program execution */ 

 6 int main( void ) 

 7 { 

 8    int sum = 0; /* initialize sum */ 

 9    int number;  /* number to be added to sum */ 

10  
11    for ( number = 2; number <= 100; number += 2 ) { 
12       sum += number; /* add number to sum */        
13    } /* end for */ 
14  
15    printf( "Sum is %d\n", sum ); /* output sum */ 
16  
17    return 0; /* indicate program ended successfully */ 
18  
19 } /* end function main */ 
  
Sum is 2550 
  

 

Outline

fig04_05.c

Note that number has a different value 
each time this statement is executed

http://www.uml.org/

		
1
/* Fig. 4.5: fig04_05.c  



		
2
   Summation with for */



		
3
#include <stdio.h>



		
4




		
5
/* function main begins program execution */



		
6
int main( void )



		
7
{



		
8
   int sum = 0; /* initialize sum */



		
9
   int number;  /* number to be added to sum */



		
10




		
11
   for ( number = 2; number <= 100; number += 2 ) {



		
12
      sum += number; /* add number to sum */       



		
13
   } /* end for */



		
14




		
15
   printf( "Sum is %d\n", sum ); /* output sum */



		
16




		
17
   return 0; /* indicate program ended successfully */



		
18




		
19
} /* end function main */



		Sum is 2550


 







 2007 Pearson Education, Inc.  All rights reserved.

31

Good Programming Practice 4.5

Although statements preceding a for and 
statements in the body of a for can often be 
merged into the for header, avoid doing so 
because it makes the program more difficult 
to read.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

32

Good Programming Practice 4.6

Limit the size of control-statement headers 
to a single line if possible.

http://www.uml.org/


 2007 Pearson Education, 
Inc.  All rights reserved.

33 1 /* Fig. 4.6: fig04_06.c 

 2    Calculating compound interest */ 

 3 #include <stdio.h> 

 4 #include <math.h>   

 5  
 6 /* function main begins program execution */ 

 7 int main( void ) 

 8 { 

 9    double amount;             /* amount on deposit */ 

10    double principal = 1000.0; /* starting principal */ 
11    double rate = .05;         /* annual interest rate */ 
12    int year;                  /* year counter */ 
13  
14    /* output table column head */ 
15    printf( "%4s%21s\n", "Year", "Amount on deposit" ); 
16  
17    /* calculate amount on deposit for each of ten years */ 
18    for ( year = 1; year <= 10; year++ ) { 
19  
20       /* calculate new amount for specified year */ 
21       amount = principal * pow( 1.0 + rate, year ); 
22  
23       /* output one table row */ 
24       printf( "%4d%21.2f\n", year, amount );    
25    } /* end for */ 
26  
27    return 0; /* indicate program ended successfully */ 
28  
29 } /* end function main */ 

 

Outline

fig04_06.c

(1 of 2 )

additional header

pow function calculates the value of the 
first argument raised to the power of 
the second argument

http://www.uml.org/

		
1
/* Fig. 4.6: fig04_06.c



		
2
   Calculating compound interest */



		
3
#include <stdio.h>



		
4
#include <math.h>  



		
5




		
6
/* function main begins program execution */



		
7
int main( void )



		
8
{



		
9
   double amount;             /* amount on deposit */



		
10
   double principal = 1000.0; /* starting principal */



		
11
   double rate = .05;         /* annual interest rate */



		
12
   int year;                  /* year counter */



		
13




		
14
   /* output table column head */



		
15
   printf( "%4s%21s\n", "Year", "Amount on deposit" );



		
16




		
17
   /* calculate amount on deposit for each of ten years */



		
18
   for ( year = 1; year <= 10; year++ ) {



		
19




		
20
      /* calculate new amount for specified year */



		
21
      amount = principal * pow( 1.0 + rate, year );



		
22




		
23
      /* output one table row */



		
24
      printf( "%4d%21.2f\n", year, amount );   



		
25
   } /* end for */



		
26




		
27
   return 0; /* indicate program ended successfully */



		
28




		
29
} /* end function main */







 2007 Pearson Education, 
Inc.  All rights reserved.

34  

Year    Amount on deposit 

   1              1050.00 

   2              1102.50 

   3              1157.63 

   4              1215.51 

   5              1276.28 

   6              1340.10 

   7              1407.10 

   8              1477.46 

   9              1551.33 

  10              1628.89 

  

 

Outline

fig04_06.c

(2 of 2 )

http://www.uml.org/

		Year    Amount on deposit


   1              1050.00


   2              1102.50


   3              1157.63


   4              1215.51


   5              1276.28


   6              1340.10


   7              1407.10


   8              1477.46


   9              1551.33


  10              1628.89


 







 2007 Pearson Education, Inc.  All rights reserved.

35

Error-Prevention Tip 4.4

Do not use variables of type float or 
double to perform monetary calculations. 
The impreciseness of floating-point 
numbers can cause errors that will result in 
incorrect monetary values.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

36

4.7 switch Multiple-Selection Statement

 switch
– Useful when a variable or expression is tested for all the values it 

can assume and different actions are taken
 Format

– Series of case labels and an optional default case
switch ( value ){

case '1':

actions

case '2':

actions

default:

actions

}

– break; exits from statement

http://www.uml.org/


 2007 Pearson Education, 
Inc.  All rights reserved.

37 1 /* Fig. 4.7: fig04_07.c 

 2    Counting letter grades */ 

 3 #include <stdio.h> 

 4  
 5 /* function main begins program execution */ 

 6 int main( void ) 

 7 { 

 8    int grade;      /* one grade */ 

 9    int aCount = 0; /* number of As */ 

10    int bCount = 0; /* number of Bs */ 
11    int cCount = 0; /* number of Cs */ 
12    int dCount = 0; /* number of Ds */ 
13    int fCount = 0; /* number of Fs */ 
14  
15    printf(  "Enter the letter grades.\n"  ); 
16    printf(  "Enter the EOF character to end input.\n"  ); 
17  
18    /* loop until user types end-of-file key sequence */ 
19    while ( ( grade = getchar() ) != EOF ) { 
20        
21       /* determine which grade was input */ 
22       switch ( grade ) { /* switch nested in while */ 
23  
24          case 'A': /* grade was uppercase A */ 
25          case 'a': /* or lowercase a */ 
26             ++aCount; /* increment aCount */ 
27             break; /* necessary to exit switch */ 
28  

 

Outline

fig04_07.c

(1 of 4 )

Outline

EOF stands for “end of file;” this character varies 
from system to system

switch statement checks each of its nested 
cases for a match

break statement makes program skip to end of switch

http://www.uml.org/

		
1
/* Fig. 4.7: fig04_07.c



		
2
   Counting letter grades */



		
3
#include <stdio.h>



		
4




		
5
/* function main begins program execution */



		
6
int main( void )



		
7
{



		
8
   int grade;      /* one grade */



		
9
   int aCount = 0; /* number of As */



		
10
   int bCount = 0; /* number of Bs */



		
11
   int cCount = 0; /* number of Cs */



		
12
   int dCount = 0; /* number of Ds */



		
13
   int fCount = 0; /* number of Fs */



		
14




		
15
   printf(  "Enter the letter grades.\n"  );



		
16
   printf(  "Enter the EOF character to end input.\n"  );



		
17




		
18
   /* loop until user types end-of-file key sequence */



		
19
   while ( ( grade = getchar() ) != EOF ) {



		
20
      



		
21
      /* determine which grade was input */



		
22
      switch ( grade ) { /* switch nested in while */



		
23




		
24
         case 'A': /* grade was uppercase A */



		
25
         case 'a': /* or lowercase a */



		
26
            ++aCount; /* increment aCount */



		
27
            break; /* necessary to exit switch */



		
28








 2007 Pearson Education, 
Inc.  All rights reserved.

3829          case 'B': /* grade was uppercase B */ 
30          case 'b': /* or lowercase b */ 
31             ++bCount; /* increment bCount */ 
32             break; /* exit switch */ 
33  
34          case 'C': /* grade was uppercase C */ 
35          case 'c': /* or lowercase c */ 
36             ++cCount; /* increment cCount */ 
37             break; /* exit switch */ 
38  
39          case 'D': /* grade was uppercase D */ 
40          case 'd': /* or lowercase d */ 
41             ++dCount; /* increment dCount */ 
42             break; /* exit switch */ 
43  
44          case 'F': /* grade was uppercase F */ 
45          case 'f': /* or lowercase f */ 
46             ++fCount; /* increment fCount */ 
47             break; /* exit switch */ 
48  
49          case '\n': /* ignore newlines, */ 
50          case '\t': /* tabs, */ 
51          case ' ':  /* and spaces in input */ 
52             break; /* exit switch */ 
53  

 

Outline

fig04_07.c

(2 of 4 )

http://www.uml.org/

		
29
         case 'B': /* grade was uppercase B */



		
30
         case 'b': /* or lowercase b */



		
31
            ++bCount; /* increment bCount */



		
32
            break; /* exit switch */



		
33




		
34
         case 'C': /* grade was uppercase C */



		
35
         case 'c': /* or lowercase c */



		
36
            ++cCount; /* increment cCount */



		
37
            break; /* exit switch */



		
38




		
39
         case 'D': /* grade was uppercase D */



		
40
         case 'd': /* or lowercase d */



		
41
            ++dCount; /* increment dCount */



		
42
            break; /* exit switch */



		
43




		
44
         case 'F': /* grade was uppercase F */



		
45
         case 'f': /* or lowercase f */



		
46
            ++fCount; /* increment fCount */



		
47
            break; /* exit switch */



		
48




		
49
         case '\n': /* ignore newlines, */



		
50
         case '\t': /* tabs, */



		
51
         case ' ':  /* and spaces in input */



		
52
            break; /* exit switch */



		
53








 2007 Pearson Education, 
Inc.  All rights reserved.

3954          default: /* catch all other characters */ 
55             printf( "Incorrect letter grade entered." );  
56             printf( " Enter a new grade.\n" );  
57             break; /* optional; will exit switch anyway */ 
58       } /* end switch */ 
59     
60    } /* end while */ 
61  
62    /* output summary of results */ 
63    printf( "\nTotals for each letter grade are:\n" ); 
64    printf( "A: %d\n", aCount ); /* display number of A grades */ 
65    printf( "B: %d\n", bCount ); /* display number of B grades */ 
66    printf( "C: %d\n", cCount ); /* display number of C grades */ 
67    printf( "D: %d\n", dCount ); /* display number of D grades */ 
68    printf( "F: %d\n", fCount ); /* display number of F grades */ 
69  
70    return 0; /* indicate program ended successfully */ 
71  
72 } /* end function main */ 

 

Outline

fig04_07.c

(3 of 4 )

default case occurs if none of the 
cases are matched

http://www.uml.org/

		
54
         default: /* catch all other characters */



		
55
            printf( "Incorrect letter grade entered." ); 



		
56
            printf( " Enter a new grade.\n" ); 



		
57
            break; /* optional; will exit switch anyway */



		
58
      } /* end switch */



		
59
   



		
60
   } /* end while */



		
61




		
62
   /* output summary of results */



		
63
   printf( "\nTotals for each letter grade are:\n" );



		
64
   printf( "A: %d\n", aCount ); /* display number of A grades */



		
65
   printf( "B: %d\n", bCount ); /* display number of B grades */



		
66
   printf( "C: %d\n", cCount ); /* display number of C grades */



		
67
   printf( "D: %d\n", dCount ); /* display number of D grades */



		
68
   printf( "F: %d\n", fCount ); /* display number of F grades */



		
69




		
70
   return 0; /* indicate program ended successfully */



		
71




		
72
} /* end function main */







 2007 Pearson Education, 
Inc.  All rights reserved.

40  
Enter the letter grades. 
Enter the EOF character to end input. 
a 
b 
c 
C 
A 
d 
f 
C 
E 
Incorrect letter grade entered. Enter a new grade. 
D 
A 
b 
^Z 
 
Totals for each letter grade are: 
A: 3 
B: 2 
C: 3 
D: 2 
F: 1 
  

 

Outline

fig04_07.c

(4 of 4 )

http://www.uml.org/

		Enter the letter grades.


Enter the EOF character to end input.


a


b


c


C


A


d


f


C


E


Incorrect letter grade entered. Enter a new grade.


D


A


b

^Z

Totals for each letter grade are:


A: 3


B: 2


C: 3


D: 2


F: 1


 







 2007 Pearson Education, Inc.  All rights reserved.

41

Portability Tip 4.1

The keystroke combinations for entering 
EOF (end of file) are system dependent. 

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

42

Portability Tip 4.2

Testing for the symbolic constant EOF rather 
than –1 makes programs more portable. The C 
standard states that EOF is a negative integral 
value (but not necessarily –1). Thus, EOF could 
have different values on different systems.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

43

Common Programming Error 4.5

Forgetting a break statement when one is 
needed in a switch statement is a logic 
error.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

44

Fig. 4.8 | switch multiple-selection statement with breaks.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

45

Good Programming Practice 4.7

Provide a default case in switch
statements. Cases not explicitly tested in a 
switch are ignored. The default case helps 
prevent this by focusing the programmer on 
the need to process exceptional conditions. 
There are situations in which no default
processing is needed. 

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

46

Good Programming Practice 4.8

Although the case clauses and the 
default case clause in a switch statement 
can occur in any order, it is considered good 
programming practice to place the default 
clause last.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

47

Good Programming Practice 4.9

In a switch statement when the 
default clause is listed last, the break
statement is not required. But some 
programmers include this break for 
clarity and symmetry with other cases. 

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

48

Common Programming Error 4.6

Not processing newline characters in the 
input when reading characters one at a time 
can cause logic errors.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

49

Error-Prevention Tip 4.5

Remember to provide processing capabilities 
for newline (and possibly other white-space) 
characters in the input when processing 
characters one at a time.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

50

4.8 do…while Repetition Statement

The do…while repetition statement 
– Similar to the while structure
– Condition for repetition only tested after the body of the 

loop is performed
- All actions are performed at least once

– Format:
do {

statement;
} while ( condition );

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

51

4.8 do…while Repetition Statement

Example (letting counter = 1):
do {

printf( "%d  ", counter );

} while (++counter <= 10);

– Prints the integers from 1 to 10

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

52

Good Programming Practice 4.10

Some programmers always include braces in 
a do...while statement even if the braces 
are not necessary. This helps eliminate 
ambiguity between the do...while
statement containing one statement and the 
while statement.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

53

Common Programming Error 4.7

Infinite loops are caused when the loop-continuation 
condition in a while, for or do...while
statement never becomes false. To prevent this, 
make sure there is not a semicolon immediately after 
the header of a while or for statement. In a 
counter-controlled loop, make sure the control 
variable is incremented (or decremented) in the 
loop. In a sentinel-controlled loop, make sure the 
sentinel value is eventually input. 

http://www.uml.org/


 2007 Pearson Education, 
Inc.  All rights reserved.

54 1 /* Fig. 4.9: fig04_09.c 

 2    Using the do/while repetition statement */ 

 3 #include <stdio.h> 

 4  
 5 /* function main begins program execution */ 

 6 int main( void ) 

 7 { 

 8    int counter = 1; /* initialize counter */ 

 9     
10    do {                                                
11       printf( "%d  ", counter ); /* display counter */ 
12    } while ( ++counter <= 10 );  /* end do...while */  
13  
14    return 0; /* indicate program ended successfully */ 
15  
16 } /* end function main */ 
  
1  2  3  4  5  6  7  8  9  10 
  

 

Outline

fig04_09.c

increments counter then checks if it is 
less than or equal to 10

http://www.uml.org/

		
1
/* Fig. 4.9: fig04_09.c



		
2
   Using the do/while repetition statement */



		
3
#include <stdio.h>



		
4




		
5
/* function main begins program execution */



		
6
int main( void )



		
7
{



		
8
   int counter = 1; /* initialize counter */



		
9
   



		
10
   do {                                               



		
11
      printf( "%d  ", counter ); /* display counter */



		
12
   } while ( ++counter <= 10 );  /* end do...while */ 



		
13




		
14
   return 0; /* indicate program ended successfully */



		
15




		
16
} /* end function main */



		1  2  3  4  5  6  7  8  9  10


 







 2007 Pearson Education, Inc.  All rights reserved.

55

Fig. 4.10 | Flowcharting the do...while repetition statement.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

56

4.9 break and continue Statements

 break
– Causes immediate exit from a while, for, do…while or 
switch statement

– Program execution continues with the first statement after 
the structure

– Common uses of the break statement
- Escape early from a loop
- Skip the remainder of a switch statement

http://www.uml.org/


 2007 Pearson Education, 
Inc.  All rights reserved.

57 1 /* Fig. 4.11: fig04_11.c 

 2    Using the break statement in a for statement */ 

 3 #include <stdio.h> 

 4  
 5 /* function main begins program execution */ 

 6 int main( void ) 

 7 { 

 8    int x; /* counter */ 

 9     
10    /* loop 10 times */ 
11    for ( x = 1; x <= 10; x++ ) { 
12  
13       /* if x is 5, terminate loop */ 
14       if ( x == 5 ) { 
15          break; /* break loop only if x is 5 */ 
16       } /* end if */ 
17 
18       printf( "%d ", x ); /* display value of x */ 
19    } /* end for */ 
20     
21    printf( "\nBroke out of loop at x == %d\n", x ); 
22     
23    return 0; /* indicate program ended successfully */ 
24  
25 } /* end function main */ 
  
1 2 3 4 

Broke out of loop at x == 5 
 

 

Outline

fig04_11.c

break immediately ends for loop

http://www.uml.org/

		
1
/* Fig. 4.11: fig04_11.c



		
2
   Using the break statement in a for statement */



		
3
#include <stdio.h>



		
4




		
5
/* function main begins program execution */



		
6
int main( void )



		
7
{



		
8
   int x; /* counter */



		
9
   



		
10
   /* loop 10 times */



		
11
   for ( x = 1; x <= 10; x++ ) {



		
12




		
13
      /* if x is 5, terminate loop */



		
14
      if ( x == 5 ) {



		
15
         break; /* break loop only if x is 5 */



		
16
      } /* end if */



		
17



		
18
      printf( "%d ", x ); /* display value of x */



		
19
   } /* end for */



		
20
   



		
21
   printf( "\nBroke out of loop at x == %d\n", x );



		
22
   



		
23
   return 0; /* indicate program ended successfully */



		
24




		
25
} /* end function main */



		1 2 3 4


Broke out of loop at x == 5










 2007 Pearson Education, Inc.  All rights reserved.

58

4.9 break and continue Statements

 continue
– Skips the remaining statements in the body of a while, 
for or do…while statement 

- Proceeds with the next iteration of the loop
– while and do…while

- Loop-continuation test is evaluated immediately after the 
continue statement is executed

– for

- Increment expression is executed, then the loop-continuation 
test is evaluated

http://www.uml.org/


 2007 Pearson Education, 
Inc.  All rights reserved.

59 1 /* Fig. 4.12: fig04_12.c 

 2    Using the continue statement in a for statement */ 

 3 #include <stdio.h> 

 4  
 5 /* function main begins program execution */ 

 6 int main( void ) 

 7 { 

 8    int x; /* counter */ 

 9  
10    /* loop 10 times */ 
11    for ( x = 1; x <= 10; x++ ) { 
12  
13       /* if x is 5, continue with next iteration of loop */ 
14       if ( x == 5 ) {    
15          continue; /* skip remaining code in loop body */ 
16       } /* end if */ 
17  
18       printf( "%d ", x ); /* display value of x */ 
19    } /* end for */ 
20     
21    printf( "\nUsed continue to skip printing the value 5\n" ); 
22     
23    return 0; /* indicate program ended successfully */ 
24  
25 } /* end function main */ 
  

1 2 3 4 6 7 8 9 10 

Used continue to skip printing the value 5 

 
 

Outline

fig04_12.c

continue skips to end of for
loop and performs next iteration

http://www.uml.org/

		
1
/* Fig. 4.12: fig04_12.c



		
2
   Using the continue statement in a for statement */



		
3
#include <stdio.h>



		
4




		
5
/* function main begins program execution */



		
6
int main( void )



		
7
{



		
8
   int x; /* counter */



		
9




		
10
   /* loop 10 times */



		
11
   for ( x = 1; x <= 10; x++ ) {



		
12




		
13
      /* if x is 5, continue with next iteration of loop */



		
14
      if ( x == 5 ) {   



		
15
         continue; /* skip remaining code in loop body */



		
16
      } /* end if */



		
17




		
18
      printf( "%d ", x ); /* display value of x */



		
19
   } /* end for */



		
20
   



		
21
   printf( "\nUsed continue to skip printing the value 5\n" );



		
22
   



		
23
   return 0; /* indicate program ended successfully */



		
24




		
25
} /* end function main */



		1 2 3 4 6 7 8 9 10


Used continue to skip printing the value 5










 2007 Pearson Education, Inc.  All rights reserved.

60

Software Engineering Observation 4.2

Some programmers feel that break and 
continue violate the norms of structured 
programming. Because the effects of these 
statements can be achieved by structured 
programming techniques we will soon learn, 
these programmers do not use break and 
continue.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

61

Performance Tip 4.1

The break and continue statements, 
when used properly, perform faster than the 
corresponding structured techniques that we 
will soon learn.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

62

Software Engineering Observation 4.3

There is a tension between achieving 
quality software engineering and achieving 
the best-performing software. Often one of 
these goals is achieved at the expense of the 
other.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

63

4.10 Logical Operators
 && ( logical AND ) 

– Returns true if both conditions are true
 || ( logical OR ) 

– Returns true if either of its conditions are true
 ! ( logical NOT, logical negation )

– Reverses the truth/falsity of its condition
– Unary operator, has one operand

 Useful as conditions in loops
Expression Result
true && false false
true || false true

!false true

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

64

 expression1 expression2 expression1 && expression2 

 0 0 0 
 0 nonzero 0 
 nonzero 0 0 
 nonzero nonzero 1 

 

Fig. 4.13 | Truth table for the && (logical AND) operator.

http://www.uml.org/

		
expression1

		expression2

		expression1 && expression2



		
0

		0

		0



		
0

		nonzero

		0



		
nonzero

		0

		0



		
nonzero

		nonzero

		1







 2007 Pearson Education, Inc.  All rights reserved.

65

 expression1 expression2 expression1 || expression2 

 0 0 0 
 0 nonzero 1 
 nonzero 0 1 
 nonzero nonzero 1 

 

Fig. 4.14 | Truth table for the logical OR (||) operator.

http://www.uml.org/

		
expression1

		expression2

		expression1 || expression2



		
0

		0

		0



		
0

		nonzero

		1



		
nonzero

		0

		1



		
nonzero

		nonzero

		1







 2007 Pearson Education, Inc.  All rights reserved.

66

 expression !expression 

 0 1 
 nonzero 0 

 

Fig. 4.15 | Truth table for operator ! (logical negation).

http://www.uml.org/

		
expression

		!expression



		
0

		1



		
nonzero

		0







 2007 Pearson Education, Inc.  All rights reserved.

67

Performance Tip 4.2

In expressions using operator &&, make the 
condition that is most likely to be false the 
leftmost condition. In expressions using 
operator ||, make the condition that is 
most likely to be true the leftmost condition. 
This can reduce a program’s execution time.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

68

Operators        Associativity     Type 

 ++ (postfix) -- (postfix)   right to left  postfix 

 +  -   ! 

 

++ (prefix) -- (prefix)  (type) right to left  unary 

 * / %    left to right   multiplicative 

 +   -    left to right  additive 

 < <=   >    >= 

 

  left to right  relational 

 ==  !=     left to right  equality 

 &&      left to right  logical AND 

 ||     left to right  logical OR 

 ?:     right to left   conditional 

 =   +=  -=   *=   /=  %= right to left  assignment 

 ,  left to right  comma 

 

Fig. 4.16 | Operator precedence and associativity. 

http://www.uml.org/

		Operators





  Associativity
    Type



		
++ (postfix)

		-- (postfix)

		

		

		right to left

		
postfix



		
+

-   !



		++ (prefix)

		-- (prefix)

		 (type)

		right to left

		
unary



		 *
/
%

		

		

		

		left to right 

		
multiplicative



		 +   -

		

		

		

		left to right

		
additive



		 <
<=   >
   >=



		

		

		left to right

		
relational



		 ==  !=


		

		

		

		left to right

		
equality



		
&&


		

		

		

		

		left to right

		
logical AND



		
||

		

		

		

		

		left to right

		
logical OR



		
?:

		

		

		

		

		right to left 

		
conditional



		 =   +=  -=   *=   /=  %=

		right to left

		
assignment



		
,


		left to right

		
comma







 2007 Pearson Education, Inc.  All rights reserved.

69

4.11 Confusing Equality (==) and 
Assignment (=) Operators
Dangerous error

– Does not ordinarily cause syntax errors
– Any expression that produces a value can be used in 

control structures  
– Nonzero values are true, zero values are false
– Example using ==:  

if ( payCode == 4 )

printf( "You get a bonus!\n" );

- Checks payCode, if it is 4 then a bonus is awarded

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

70

4.11 Confusing Equality (==) and 
Assignment (=) Operators

- Example, replacing == with =:
if ( payCode = 4 )

printf( "You get a bonus!\n" );

This sets payCode to 4
4 is nonzero, so expression is true, and bonus awarded no 

matter what the payCode was
– Logic error, not a syntax error

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

71

Common Programming Error 4.8

Using operator == for assignment or using 
operator = for equality is a logic error.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

72

4.11 Confusing Equality (==) and 
Assignment (=) Operators
 lvalues

– Expressions that can appear on the left side of an equation 
– Their values can be changed, such as variable names 

- x = 4;

 rvalues
– Expressions that can only appear on the right side of an equation
– Constants, such as numbers  

- Cannot write 4 = x;
- Must write x = 4;

– lvalues can be used as rvalues, but not vice versa
- y = x;

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

73

Good Programming Practice 4.11

When an equality expression has a variable and 
a constant, as in x == 1, some programmers 
prefer to write the expression with the constant 
on the left and the variable name on the right 
(e.g. 1 == x as protection against the logic error 
that occurs when you accidentally replace 
operator == with =.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

74

Error-Prevention Tip 4.6

After you write a program, text search it
for every = and check that it is being used 
properly.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

75

Fig. 4.17 | C’s single-entry/single-exit sequence, selection and repetition statements.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

76

4.12 Structured Programming Summary

 Structured programming
– Easier than unstructured programs to understand, test, 

debug and, modify programs

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

77

  Rules for Forming Structured Programs 

  1) Begin with the “simplest flowchart” (Fig. 4.19). 
 2) Any rectangle (action) can be replaced by two rectangles (actions) in  sequence. 
 3) Any rectangle (action) can be replaced by any control statement (sequence, if,  
      if...else, switch, while, do...while or for). 
 4) Rules 2 and 3 may be applied as often as you like and in any order. 

 

Fig. 4.18 | Rules for forming structured programs.

http://www.uml.org/

		

Rules for Forming Structured Programs



		

1)
Begin with the “simplest flowchart” (Fig. 4.19).



		
2) Any rectangle (action) can be replaced by two rectangles (actions) in  sequence.



		
3) Any rectangle (action) can be replaced by any control statement (sequence, if, 

     if...else, switch, while, do...while or for).



		
4) Rules 2 and 3 may be applied as often as you like and in any order.







 2007 Pearson Education, Inc.  All rights reserved.

78

Fig. 4.19 | Simplest flowchart.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

79

Fig. 4.20 | Repeatedly applying rule 2 of Fig. 4.18 to the simplest flowchart.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

80

Fig. 4.21 | Applying rule 3 of Fig. 4.18 to the simplest flowchart.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

81

Fig. 4.22 | Stacked, nested and overlapped building blocks.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

82

Fig. 4.23 | An unstructured flowchart.

http://www.uml.org/


 2007 Pearson Education, Inc.  All rights reserved.

83

4.12 Structured Programming Summary

All programs can be broken down into 3 controls
– Sequence – handled automatically by compiler
– Selection – if, if…else or switch
– Repetition – while, do…while or for

- Can only be combined in two ways
Nesting (rule 3)
Stacking (rule 2)

– Any selection can be rewritten as an if statement, and any 
repetition can be rewritten as a while statement

http://www.uml.org/

	4
	Slide Number 2
	Slide Number 3
	OBJECTIVES
	Slide Number 5
	4.1 Introduction
	4.2 Repetition Essentials
	4.3 Counter-Controlled Repetition
	4.3 Counter-Controlled Repetition
	Slide Number 10
	4.3 Counter-Controlled Repetition
	Common Programming Error 4.1
	Error-Prevention Tip 4.1
	Good Programming Practice 4.1
	Good Programming Practice 4.2
	Good Programming Practice 4.3
	Good Programming Practice 4.4
	Slide Number 18
	Fig. 4.3 | for statement header components.
	Common Programming Error 4.2
	Error-Prevention Tip 4.2
	4.4 for Repetition Statement
	4.4 for Repetition Statement
	Software Engineering Observation 4.1
	Common Programming Error 4.3
	Common Programming Error 4.4
	4.5 for Statement : Notes and Observations
	Error-Prevention Tip 4.3
	Fig. 4.4 | Flowcharting a typical for repetition statement.
	Slide Number 30
	Good Programming Practice 4.5
	Good Programming Practice 4.6
	Slide Number 33
	Slide Number 34
	Error-Prevention Tip 4.4
	4.7 switch Multiple-Selection Statement
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Portability Tip 4.1
	Portability Tip 4.2
	Common Programming Error 4.5
	Fig. 4.8 | switch multiple-selection statement with breaks.
	Good Programming Practice 4.7
	Good Programming Practice 4.8
	Good Programming Practice 4.9
	Common Programming Error 4.6
	Error-Prevention Tip 4.5
	4.8 do…while Repetition Statement
	4.8 do…while Repetition Statement
	Good Programming Practice 4.10
	Common Programming Error 4.7
	Slide Number 54
	Fig. 4.10 | Flowcharting the do...while repetition statement.
	4.9 break and continue Statements
	Slide Number 57
	4.9 break and continue Statements
	Slide Number 59
	Software Engineering Observation 4.2
	Performance Tip 4.1
	Software Engineering Observation 4.3
	4.10 Logical Operators
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Performance Tip 4.2
	Slide Number 68
	4.11 Confusing Equality (==) and Assignment (=) Operators
	4.11 Confusing Equality (==) and Assignment (=) Operators
	Common Programming Error 4.8
	4.11 Confusing Equality (==) and Assignment (=) Operators
	Good Programming Practice 4.11
	Error-Prevention Tip 4.6
	Fig. 4.17 | C’s single-entry/single-exit sequence, selection and repetition statements.
	4.12 Structured Programming Summary
	Slide Number 77
	Fig. 4.19 | Simplest flowchart.
	Fig. 4.20 | Repeatedly applying rule 2 of Fig. 4.18 to the simplest flowchart.
	Fig. 4.21 | Applying rule 3 of Fig. 4.18 to the simplest flowchart.
	Fig. 4.22 | Stacked, nested and overlapped building blocks.
	Fig. 4.23 | An unstructured flowchart.
	4.12 Structured Programming Summary

