
 2007 Pearson Education, Inc. All rights reserved.

1

2
Introduction

to C Programming

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

2

What's in a name? That which we call a rose
By any other name would smell as sweet.

—William Shakespeare
Romeo and Juliet

When faced with a decision, I always ask,
“What would be the most fun?”

—Peggy Walker

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

3

“Take some more tea,” the March Hare said to
Alice, very earnestly. “I’ve had nothing yet,”
Alice replied in an offended tone: “so I can’t take
more.” “You mean you can’t take less,” said the
Hatter: “it’s very easy to take more than nothing.”

—Lewis Carroll

High thoughts must have high language.
—Aristophanes

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

4

OBJECTIVES
In this chapter you will learn:
 To write simple computer programs in C.
 To use simple input and output statements.
 The fundamental data types.
 Computer memory concepts.
 To use arithmetic operators.
 The precedence of arithmetic operators.
 To write simple decision-making statements.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

5

2.1 Introduction
2.2 A Simple C Program: Printing a Line of Text
2.3 Another Simple C Program: Adding Two Integers
2.4 Memory Concepts
2.5 Arithmetic in C
2.6 Decision Making: Equality and Relational Operators

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

6

2.1 Introduction

C programming language
– Structured and disciplined approach to program design

 Structured programming
– Introduced in chapters 3 and 4
– Used throughout the remainder of the book

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

7 1 /* Fig. 2.1: fig02_01.c

 2 A first program in C */

 3 #include <stdio.h>

 4
 5 /* function main begins program execution */

 6 int main(void)

 7 {

 8 printf("Welcome to C!\n");

 9
10 return 0; /* indicate that program ended successfully */
11
12 } /* end function main */

Welcome to C!

Outline

fig02_01.c

/* and */ indicate comments – ignored by compiler

#include directive tells C to load a particular file

Left brace declares beginning of main function

Statement tells C to perform an action

return statement ends the function

Right brace declares end of main function

http://www.uml.org/

		
1
/* Fig. 2.1: fig02_01.c

		
2
 A first program in C */

		
3
#include <stdio.h>

		
4

		
5
/* function main begins program execution */

		
6
int main(void)

		
7
{

		
8
 printf("Welcome to C!\n");

		
9

		
10
 return 0; /* indicate that program ended successfully */

		
11

		
12
} /* end function main */

		Welcome to C!

 2007 Pearson Education, Inc. All rights reserved.

8

2.2 A Simple C Program:
Printing a Line of Text

Comments
– Text surrounded by /* and */ is ignored by computer
– Used to describe program

 #include <stdio.h>
– Preprocessor directive

- Tells computer to load contents of a certain file
– <stdio.h> allows standard input/output operations

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

9

Common Programming Error 2.1

Forgetting to terminate a comment with */.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

10

Common Programming Error 2.2

Starting a comment with the characters */
or ending a comment with the characters /*.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

11

2.2 A Simple C Program:
Printing a Line of Text
 int main()

– C++ programs contain one or more functions, exactly one
of which must be main

– Parenthesis used to indicate a function
– int means that main "returns" an integer value
– Braces ({ and }) indicate a block

- The bodies of all functions must be contained in braces

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

12

Good Programming Practice 2.1

Every function should be preceded by a
comment describing the purpose of the
function.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

13

2.2 A Simple C Program:
Printing a Line of Text
 printf("Welcome to C!\n");

– Instructs computer to perform an action
- Specifically, prints the string of characters within quotes (" ")

– Entire line called a statement
- All statements must end with a semicolon (;)

– Escape character (\)
- Indicates that printf should do something out of the ordinary
- \n is the newline character

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

14

 Escape sequence Description

 \n Newline. Position the cursor at the beginning of the next line.
 \t Horizontal tab. Move the cursor to the next tab stop.
 \a Alert. Sound the system bell.
 \\ Backslash. Insert a backslash character in a string.
 \" Double quote. Insert a double-quote character in a string.

Fig. 2.2 | Some common escape sequences.

http://www.uml.org/

		
Escape sequence

		Description

		
\n

		Newline. Position the cursor at the beginning of the next line.

		
\t

		Horizontal tab. Move the cursor to the next tab stop.

		
\a

		Alert. Sound the system bell.

		
\\

		Backslash. Insert a backslash character in a string.

		
\"

		Double quote. Insert a double-quote character in a string.

 2007 Pearson Education, Inc. All rights reserved.

15

Common Programming Error 2.3

Typing the name of the output function
printf as print in a program.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

16

2.2 A Simple C Program:
Printing a Line of Text
 return 0;

– A way to exit a function
– return 0, in this case, means that the program terminated

normally

 Right brace }
– Indicates end of main has been reached

 Linker
– When a function is called, linker locates it in the library
– Inserts it into object program
– If function name is misspelled, the linker will produce an error

because it will not be able to find function in the library

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

17

Good Programming Practice 2.2

Add a comment to the line containing the
right brace, }, that closes every function,
including main.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

18

Good Programming Practice 2.3

The last character printed by a function that
displays output should be a newline (\n).
This ensures that the function will leave the
screen cursor positioned at the beginning of a
new line. Conventions of this nature
encourage software reusability—a key goal in
software development environments.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

19

Good Programming Practice 2.4

Indent the entire body of each function one
level of indentation (we recommend three
spaces) within the braces that define the
body of the function. This indentation
emphasizes the functional structure of
programs and helps make programs easier
to read.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

20

Good Programming Practice 2.5

Set a convention for the size of indent you
prefer and then uniformly apply that
convention. The tab key may be used to create
indents, but tab stops may vary. We
recommend using three spaces per level of
indent.

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

21 1 /* Fig. 2.3: fig02_03.c

 2 Printing on one line with two printf statements */

 3 #include <stdio.h>

 4
 5 /* function main begins program execution */

 6 int main(void)

 7 {

 8 printf("Welcome ");

 9 printf("to C!\n");

10
11 return 0; /* indicate that program ended successfully */
12
13 } /* end function main */

Welcome to C!

Outline

fig02_03.c
printf statement starts printing from where

the last statement ended, so the text is
printed on one line.

http://www.uml.org/

		
1
/* Fig. 2.3: fig02_03.c

		
2
 Printing on one line with two printf statements */

		
3
#include <stdio.h>

		
4

		
5
/* function main begins program execution */

		
6
int main(void)

		
7
{

		
8
 printf("Welcome ");

		
9
 printf("to C!\n");

		
10

		
11
 return 0; /* indicate that program ended successfully */

		
12

		
13
} /* end function main */

		Welcome to C!

 2007 Pearson Education,
Inc. All rights reserved.

22 1 /* Fig. 2.4: fig02_04.c

 2 Printing multiple lines with a single printf */

 3 #include <stdio.h>

 4
 5 /* function main begins program execution */

 6 int main(void)

 7 {

 8 printf("Welcome\nto\nC!\n");

 9
10 return 0; /* indicate that program ended successfully */
11
12 } /* end function main */

Welcome
to
C!

Outline

fig02_04.cNewline characters move the cursor to the next line

http://www.uml.org/

		
1
/* Fig. 2.4: fig02_04.c

		
2
 Printing multiple lines with a single printf */

		
3
#include <stdio.h>

		
4

		
5
/* function main begins program execution */

		
6
int main(void)

		
7
{

		
8
 printf("Welcome\nto\nC!\n");

		
9

		
10
 return 0; /* indicate that program ended successfully */

		
11

		
12
} /* end function main */

		Welcome

to

C!

 2007 Pearson Education,
Inc. All rights reserved.

23 1 /* Fig. 2.5: fig02_05.c

 2 Addition program */

 3 #include <stdio.h>

 4
 5 /* function main begins program execution */

 6 int main(void)

 7 {

 8 int integer1; /* first number to be input by user */

 9 int integer2; /* second number to be input by user */

10 int sum; /* variable in which sum will be stored */
11
12 printf("Enter first integer\n"); /* prompt */
13 scanf("%d", &integer1); /* read an integer */
14
15 printf("Enter second integer\n"); /* prompt */
16 scanf("%d", &integer2); /* read an integer */
17
18 sum = integer1 + integer2; /* assign total to sum */
19
20 printf("Sum is %d\n", sum); /* print sum */
21
22 return 0; /* indicate that program ended successfully */
23
24 } /* end function main */

Enter first integer
45
Enter second integer
72
Sum is 117

Outline

fig02_05.c

Definitions of variables

scanf obtains a value from the
user and assigns it to integer1

scanf obtains a value from the
user and assigns it to integer2

Assigns a value to sum

http://www.uml.org/

		
1
/* Fig. 2.5: fig02_05.c

		
2
 Addition program */

		
3
#include <stdio.h>

		
4

		
5
/* function main begins program execution */

		
6
int main(void)

		
7
{

		
8
 int integer1; /* first number to be input by user */

		
9
 int integer2; /* second number to be input by user */

		
10
 int sum; /* variable in which sum will be stored */

		
11

		
12
 printf("Enter first integer\n"); /* prompt */

		
13
 scanf("%d", &integer1); /* read an integer */

		
14

		
15
 printf("Enter second integer\n"); /* prompt */

		
16
 scanf("%d", &integer2); /* read an integer */

		
17

		
18
 sum = integer1 + integer2; /* assign total to sum */

		
19

		
20
 printf("Sum is %d\n", sum); /* print sum */

		
21

		
22
 return 0; /* indicate that program ended successfully */

		
23

		
24
} /* end function main */

		Enter first integer

45

Enter second integer

72

Sum is 117

 2007 Pearson Education, Inc. All rights reserved.

24

2.3 Another Simple C Program:
Adding Two Integers
 As before

– Comments, #include <stdio.h> and main
 int integer1, integer2, sum;

– Definition of variables
- Variables: locations in memory where a value can be stored

– int means the variables can hold integers (-1, 3, 0, 47)
– Variable names (identifiers)

- integer1, integer2, sum
- Identifiers: consist of letters, digits (cannot begin with a digit) and

underscores(_)
Case sensitive

– Definitions appear before executable statements
- If an executable statement references and undeclared variable it will

produce a syntax (compiler) error

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

25

Common Programming Error 2.4

Using a capital letter where a lowercase letter
should be used (for example, typing Main
instead of main).

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

26

Portability Tip 2.1

Use identifiers of 31 or fewer characters.
This helps ensure portability and can avoid
some subtle programming errors.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

27

Good Programming Practice 2.6

Choosing meaningful variable names
helps make a program self-documenting,
i.e., fewer comments are needed.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

28

Good Programming Practice 2.7

The first letter of an identifier used as a
simple variable name should be a lowercase
letter. Later in the text we will assign special
significance to identifiers that begin with a
capital letter and to identifiers that use all
capital letters.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

29

Good Programming Practice 2.8

Multiple-word variable names can help make a
program more readable. Avoid running the separate
words together as in totalcommissions. Rather,
separate the words with underscores as in
total_commissions, or, if you do wish to run the
words together, begin each word after the first with a
capital letter as in totalCommissions. The latter
style is preferred.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

30

Common Programming Error 2.5

Placing variable definitions among
executable statements causes syntax errors.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

31

Good Programming Practice 2.9

Separate the definitions and executable
statements in a function with one blank line
to emphasize where the definitions end and
the executable statements begin.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

32

2.3 Another Simple C Program:
Adding Two Integers
 scanf("%d", &integer1);

– Obtains a value from the user
- scanf uses standard input (usually keyboard)

– This scanf statement has two arguments
- %d - indicates data should be a decimal integer
- &integer1 - location in memory to store variable
- & is confusing in beginning – for now, just remember to

include it with the variable name in scanf statements
– When executing the program the user responds to the
scanf statement by typing in a number, then pressing the
enter (return) key

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

33

Good Programming Practice 2.10

Place a space after each comma (,) to
make programs more readable.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

34

2.3 Another Simple C Program:
Adding Two Integers
 = (assignment operator)

– Assigns a value to a variable
– Is a binary operator (has two operands)

sum = variable1 + variable2;

sum gets variable1 + variable2;

– Variable receiving value on left
 printf("Sum is %d\n", sum);

– Similar to scanf
- %d means decimal integer will be printed
- sum specifies what integer will be printed

– Calculations can be performed inside printf statements
printf("Sum is %d\n", integer1 + integer2);

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

35

Good Programming Practice 2.11

Place spaces on either side of a binary
operator. This makes the operator stand
out and makes the program more readable.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

36

Common Programming Error 2.6

A calculation in an assignment statement
must be on the right side of the = operator.
It is a syntax error to place a calculation on
the left side of an assignment operator.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

37

Common Programming Error 2.7

Forgetting one or both of the double quotes
surrounding the format control string in a
printf or scanf.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

38

Common Programming Error 2.8

Forgetting the % in a conversion specification in
the format control string of a printf or scanf.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

39

Common Programming Error 2.9

Placing an escape sequence such as \n outside
the format control string of a printf or
scanf.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

40

Common Programming Error 2.10

Forgetting to include the expressions
whose values are to be printed in a
printf containing conversion specifiers.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

41

Common Programming Error 2.11

Not providing a conversion specifier when
one is needed in a printf format control
string to print the value of an expression.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

42

Common Programming Error 2.12

Placing inside the format control string the
comma that is supposed to separate the
format control string from the expressions
to be printed.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

43

Common Programming Error 2.13

Forgetting to precede a variable in a scanf
statement with an ampersand when that
variable should, in fact, be preceded by an
ampersand.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

44

Common Programming Error 2.14

Preceding a variable included in a printf
statement with an ampersand when, in fact,
that variable should not be preceded by an
ampersand.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

45

2.4 Memory Concepts

Variables
– Variable names correspond to locations in the computer's

memory
– Every variable has a name, a type, a size and a value
– Whenever a new value is placed into a variable (through

scanf, for example), it replaces (and destroys) the previous
value

– Reading variables from memory does not change them

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

46

Fig. 2.6 | Memory location showing the name and value of a variable.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

47

Fig. 2.7 | Memory locations after both variables are input.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

48

Fig. 2.8 | Memory locations after a calculation.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

49

2.5 Arithmetic
 Arithmetic calculations

– Use * for multiplication and / for division
– Integer division truncates remainder

- 7 / 5 evaluates to 1
– Modulus operator(%) returns the remainder

- 7 % 5 evaluates to 2

 Operator precedence
– Some arithmetic operators act before others (i.e., multiplication

before addition)
- Use parenthesis when needed

– Example: Find the average of three variables a, b and c
- Do not use: a + b + c / 3
- Use: (a + b + c) / 3

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

50

 C opetration Arithmetic
operator

Algebraic
expression C expression

 Addition + f + 7 f + 7

 Subtraction – p – c p - c

 Multiplication * bm b * m

 Division /
or orxx y x ÷ y

y
 x / y

 Remainder % r mod s r % s

Fig. 2.9 | Arithmetic operators.

http://www.uml.org/

		
C opetration

		Arithmetic operator

		Algebraic expression

		C expression

		 Addition

		+

		f + 7

		f + 7

		 Subtraction

		–

		p – c

		p - c

		 Multiplication

		*

		bm

		b * m

		 Division

		/

		

[image: image1.wmf]oror

x

xy x ÷ y

y

		
x / y

		 Remainder

		%

		r mod s

		r % s

_1211205907.unknown

 2007 Pearson Education, Inc. All rights reserved.

51

Common Programming Error 2.15

An attempt to divide by zero is normally
undefined on computer systems and generally
results in a fatal error, i.e., an error that causes
the program to terminate immediately without
having successfully performed its job. Nonfatal
errors allow programs to run to completion,
often producing incorrect results.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

52

Fig. 2.10 | Precedence of arithmetic operators.

 Operator(s) Operation(s) Order of evaluation (precedence)

 () Parentheses Evaluated first. If the parentheses are
 nested, the expression in the innermost pair is
 evaluated first. If there are several pairs of
 parentheses “on the same level” (i.e., not nested),
 they are evaluated left to right.

 *
 /

 %

Multiplication
Division
Remainder

 Evaluated second. If there are several, they are
 evaluated left to right.

 +
 -

Addition
Subtraction

 Evaluated last. If there are several, they are
 evaluated left to right.

http://www.uml.org/

		
Operator(s)

		Operation(s)

		Order of evaluation (precedence)

		
()

		Parentheses

		
Evaluated first. If the parentheses are
nested, the expression in the innermost pair is
evaluated first. If
there are several pairs of
parentheses “on the same level” (i.e., not nested),
they are evaluated left to right.

		
*

/

		Multiplication
Division
Remainder

		
Evaluated second. If there are several, they are
evaluated left to right.

		
%

		

		

		
+

-

		Addition
Subtraction

		
Evaluated last. If there are several, they are
evaluated left to right.

 2007 Pearson Education, Inc. All rights reserved.

53

Fig. 2.11 | Order in which a second-degree polynomial is evaluated.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

54

Good Programming Practice 2.12

Using redundant parentheses in complex
arithmetic expressions can make the
expressions clearer.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

55

2.6 Decision Making: Equality and
Relational Operators
 Executable statements

– Perform actions (calculations, input/output of data)
– Perform decisions

- May want to print "pass" or "fail" given the value of a test grade

 if control statement
– Simple version in this section, more detail later
– If a condition is true, then the body of the if statement executed

- 0 is false, non-zero is true
– Control always resumes after the if structure

 Keywords
– Special words reserved for C
– Cannot be used as identifiers or variable names

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

56

 Standard algebraic
 equality operator or
 relational operator

C equality or
relational
operator

Example of
C condition Meaning of C condition

 Equality operators

 = == x == y x is equal to y

 ≠ != x != y x is not equal to y

 Relational operators

 > > x > y x is greater than y

 < < x < y x is less than y

 ≥ >= x >= y x is greater than or equal to y

 ≤ <= x <= y x is less than or equal to y

Fig. 2.12 | Equality and relational operators.

http://www.uml.org/

		
Standard algebraic

equality operator or

relational operator

		C equality or
relational
operator

		Example of
C condition

		Meaning of C condition

		 Equality operators

		

		

		

		

		==

		x == y

		x is equal to y

		

		!=

		x != y

		x is not equal to y

		 Relational operators

		

		

		

		

		>

		x > y

		x is greater than y

		

		<

		x < y

		x is less than y

		≥

		>=

		x >= y

		x is greater than or equal to y

		 ≤

		<=

		x <= y

		x is less than or equal to y

 2007 Pearson Education, Inc. All rights reserved.

57

Common Programming Error 2.16

A syntax error will occur if the two symbols
in any of the operators ==, !=, >= and <=
are separated by spaces.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

58

Common Programming Error 2.17

A syntax error will occur if the two symbols
in any of the operators !=, >= and <= are
reversed as in =!, => and =<, respectively.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

59

Common Programming Error 2.18

Confusing the equality operator == with
the assignment operator =.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

60

Common Programming Error 2.19

Placing a semicolon immediately to the right
of the right parenthesis after the condition in
an if statement.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

61

Good Programming Practice 2.13

Indent the statement(s) in the body of an
if statement.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

62

Good Programming Practice 2.14

Place a blank line before and after every
if statement in a program for readability.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

63

Good Programming Practice 2.15

Although it is allowed, there should be no
more than one statement per line in a program.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

64

Common Programming Error 2.20

Placing commas (when none are needed)
between conversion specifiers in the format
control string of a scanf statement.

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

65 1 /* Fig. 2.13: fig02_13.c

 2 Using if statements, relational

 3 operators, and equality operators */

 4 #include <stdio.h>

 5
 6 /* function main begins program execution */

 7 int main(void)

 8 {

 9 int num1; /* first number to be read from user */

10 int num2; /* second number to be read from user */
11
12 printf("Enter two integers, and I will tell you\n");
13 printf("the relationships they satisfy: ");
14
15 scanf("%d%d", &num1, &num2); /* read two integers */
16
17 if (num1 == num2) {
18 printf("%d is equal to %d\n", num1, num2);
19 } /* end if */
20
21 if (num1 != num2) {
22 printf("%d is not equal to %d\n", num1, num2);
23 } /* end if */
24
25 if (num1 < num2) {
26 printf("%d is less than %d\n", num1, num2);
27 } /* end if */
28

Outline

fig02_13.c

(1 of 3)

Checks if num1 is equal to num2

Checks if num1 is not equal to num2

Checks if num1 is less than num2

http://www.uml.org/

		
1
/* Fig. 2.13: fig02_13.c

		
2
 Using if statements, relational

		
3
 operators, and equality operators */

		
4
#include <stdio.h>

		
5

		
6
/* function main begins program execution */

		
7
int main(void)

		
8
{

		
9
 int num1; /* first number to be read from user */

		
10
 int num2; /* second number to be read from user */

		
11

		
12
 printf("Enter two integers, and I will tell you\n");

		
13
 printf("the relationships they satisfy: ");

		
14

		
15
 scanf("%d%d", &num1, &num2); /* read two integers */

		
16

		
17
 if (num1 == num2) {

		
18
 printf("%d is equal to %d\n", num1, num2);

		
19
 } /* end if */

		
20

		
21
 if (num1 != num2) {

		
22
 printf("%d is not equal to %d\n", num1, num2);

		
23
 } /* end if */

		
24

		
25
 if (num1 < num2) {

		
26
 printf("%d is less than %d\n", num1, num2);

		
27
 } /* end if */

		
28

 2007 Pearson Education,
Inc. All rights reserved.

6629 if (num1 > num2) {
30 printf("%d is greater than %d\n", num1, num2);
31 } /* end if */
32
33 if (num1 <= num2) {
34 printf("%d is less than or equal to %d\n", num1, num2);
35 } /* end if */
36
37 if (num1 >= num2) {
38 printf("%d is greater than or equal to %d\n", num1, num2);
39 } /* end if */
40
41 return 0; /* indicate that program ended successfully */
42
43 } /* end function main */
43 } /* end function main */

Enter two integers, and I will tell you
the relationships they satisfy: 3 7
3 is not equal to 7
3 is less than 7
3 is less than or equal to 7

 (continued on next slide…)

Outline

fig02_13.c

(2 of 3)

Checks if num1 is greater than num2
Checks if num1 is less than or equal to num2

Checks if num1 is greater than equal to num2

http://www.uml.org/

		
29
 if (num1 > num2) {

		
30
 printf("%d is greater than %d\n", num1, num2);

		
31
 } /* end if */

		
32

		
33
 if (num1 <= num2) {

		
34
 printf("%d is less than or equal to %d\n", num1, num2);

		
35
 } /* end if */

		
36

		
37
 if (num1 >= num2) {

		
38
 printf("%d is greater than or equal to %d\n", num1, num2);

		
39
 } /* end if */

		
40

		
41
 return 0; /* indicate that program ended successfully */

		
42

		
43
} /* end function main */

		
43
} /* end function main */

		Enter two integers, and I will tell you

the relationships they satisfy: 3 7

3 is not equal to 7

3 is less than 7

3 is less than or equal to 7

(continued on next slide…)

 2007 Pearson Education,
Inc. All rights reserved.

67 (continued from previous slide…)

Enter two integers, and I will tell you
the relationships they satisfy:
22 is not equal to 12
22 is greater than 12
22 is greater than or equal to 12

Enter two integers, and I will tell you
the relationships they satisfy:
7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7

Outline

fig02_13.c

(3 of 3)

http://www.uml.org/

		
(continued from previous slide…)

Enter two integers, and I will tell you

the relationships they satisfy:

22 is not equal to 12

22 is greater than 12

22 is greater than or equal to 12

		

		Enter two integers, and I will tell you

the relationships they satisfy:

7 is equal to 7

7 is less than or equal to 7

7 is greater than or equal to 7

 2007 Pearson Education, Inc. All rights reserved.

68

Good Programming Practice 2.16

A lengthy statement may be spread over
several lines. If a statement must be split across
lines, choose breaking points that make sense
(such as after a comma in a comma-separated
list). If a statement is split across two or more
lines, indent all subsequent lines.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

69

Good Programming Practice 2.17

Refer to the operator precedence chart when writing
expressions containing many operators. Confirm that
the operators in the expression are applied in the proper
order. If you are uncertain about the order of evaluation
in a complex expression, use parentheses to group
expressions or break the statement into several simpler
statements. Be sure to observe that some of C’s
operators such as the assignment operator (=) associate
from right to left rather than from left to right.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

70

 Operators Associativity

 () left to right

 * / % left to right

 + - left to right

 < <= > >= left to right

 == != left to right

 = right to left

Fig. 2.14 | Precedence and associativity of the operators discussed so far.

http://www.uml.org/

		
Operators
Associativity

		
()

		

		

		

		
left to right

		
*

		/

		%

		

		
left to right

		
+

		-

		

		

		
left to right

		
<

		<=

		>

		>=

		
left to right

		
==

		!=

		

		

		
left to right

		
=

		

		

		

		
right to left

 2007 Pearson Education, Inc. All rights reserved.

71

 Keywords

 auto double int struct

 break else long switch

 case enum register typedef

 char extern return union

 const float short unsigned

 continue for signed void

 default goto sizeof volatile

 do if static while

Fig. 2.15 | C’s keywords.

http://www.uml.org/

		
Keywords

		

		

		

		
auto

		double

		int

		struct

		
break

		else

		long

		switch

		
case

		enum

		register

		typedef

		
char

		extern

		return

		union

		
const

		float

		short

		unsigned

		
continue

		for

		signed

		void

		
default

		goto

		sizeof

		volatile

		
do

		if

		static

		while

	2
	Slide Number 2
	Slide Number 3
	OBJECTIVES
	Slide Number 5
	2.1 Introduction
	Slide Number 7
	2.2 A Simple C Program:�Printing a Line of Text
	Common Programming Error 2.1
	Common Programming Error 2.2
	2.2 A Simple C Program:�Printing a Line of Text
	Good Programming Practice 2.1
	2.2 A Simple C Program:�Printing a Line of Text
	Slide Number 14
	Common Programming Error 2.3
	2.2 A Simple C Program:�Printing a Line of Text
	Good Programming Practice 2.2
	Good Programming Practice 2.3
	Good Programming Practice 2.4
	Good Programming Practice 2.5
	Slide Number 21
	Slide Number 22
	Slide Number 23
	2.3 Another Simple C Program:�Adding Two Integers
	Common Programming Error 2.4
	Portability Tip 2.1
	Good Programming Practice 2.6
	Good Programming Practice 2.7
	Good Programming Practice 2.8
	Common Programming Error 2.5
	Good Programming Practice 2.9
	2.3 Another Simple C Program:�Adding Two Integers
	Good Programming Practice 2.10
	2.3 Another Simple C Program:�Adding Two Integers
	Good Programming Practice 2.11
	Common Programming Error 2.6
	Common Programming Error 2.7
	Common Programming Error 2.8
	Common Programming Error 2.9
	Common Programming Error 2.10
	Common Programming Error 2.11
	Common Programming Error 2.12
	Common Programming Error 2.13
	Common Programming Error 2.14
	2.4 Memory Concepts
	Fig. 2.6 | Memory location showing the name and value of a variable.
	Fig. 2.7 | Memory locations after both variables are input.
	Fig. 2.8 | Memory locations after a calculation.
	2.5 Arithmetic
	Slide Number 50
	Common Programming Error 2.15
	Slide Number 52
	Fig. 2.11 | Order in which a second-degree polynomial is evaluated.
	Good Programming Practice 2.12
	2.6 Decision Making: Equality and Relational Operators
	Fig. 2.12 | Equality and relational operators.
	Common Programming Error 2.16
	Common Programming Error 2.17
	Common Programming Error 2.18
	Common Programming Error 2.19
	Good Programming Practice 2.13
	Good Programming Practice 2.14
	Good Programming Practice 2.15
	Common Programming Error 2.20
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Good Programming Practice 2.16
	Good Programming Practice 2.17
	Slide Number 70
	Slide Number 71

