
 2007 Pearson Education, Inc. All rights reserved.

1

8
C Characters and

Strings

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

2

The chief defect of Henry King
Was chewing little bits of string.

—Hilaire Belloc

Vigorous writing is concise.
A sentence should contain no unnecessary words,
a paragraph no unnecessary sentences.

—William Strunk, Jr.

I have made this letter longer than usual, because
I lack the time to make it short.

—Blaise Pascal

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

3

The difference between the almost-right word &
the right word is really a large matter—it’s the
difference between the lightning bug and the
lightning.

—Mark Twain

Mum’s the word.
—Miguel de Cervantes,

Don Quixote de la Mancha

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

4

OBJECTIVES
In this chapter you will learn:
 To use the functions of the character-handling library

(ctype).
 To use the string-conversion functions of the general

utilities library (stdlib).
 To use the string and character input/output functions

of the standard input/output library (stdio).
 To use the string-processing functions of the string

handling library (string).
 The power of function libraries as a means of

achieving software reusability.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

5

8.1 Introduction
8.2 Fundamentals of Strings and Characters
8.3 Character-Handling Library
8.4 String-Conversion Functions
8.5 Standard Input/Output Library Functions
8.6 String-Manipulation Functions of the

String-Handling Library
8.7 Comparison Functions of the String-Handling

Library
8.8 Search Functions of the String-Handling Library
8.9 Memory Functions of the String-Handling Library
8.10 Other Functions of the String-Handling Library

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

6

8.1 Introduction

 Introduce some standard library functions
– Easy string and character processing
– Programs can process characters, strings, lines of text, and

blocks of memory

These techniques used to make
– Word processors
– Page layout software
– Typesetting programs

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

7

8.2 Fundamentals of Strings and
Characters
 Characters

– Building blocks of programs
- Every program is a sequence of meaningfully grouped characters

– Character constant
- An int value represented as a character in single quotes
- 'z' represents the integer value of z

 Strings
– Series of characters treated as a single unit

- Can include letters, digits and special characters (*, /, $)
– String literal (string constant) - written in double quotes

- "Hello"

– Strings are arrays of characters
- String a pointer to first character
- Value of string is the address of first character

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

8

Portability Tip 8.1

When a variable of type char * is initialized
with a string literal, some compilers may place
the string in a location in memory where the
string cannot be modified. If you might need
to modify a string literal, it should be stored in
a character array to ensure modifiability on
all systems.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

9

Common Programming Error 8.1

Not allocating sufficient space in a
character array to store the null character
that terminates a string is an error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

10

Common Programming Error 8.2

Printing a “string” that does not contain
a terminating null character is an error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

11

Error-Prevention Tip 8.1

When storing a string of characters in a
character array, be sure that the array is large
enough to hold the largest string that will be
stored. C allows strings of any length to be
stored. If a string is longer than the character
array in which it is to be stored, characters
beyond the end of the array will overwrite data
in memory following the array.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

12

8.2 Fundamentals of Strings and
Characters
 String definitions

– Define as a character array or a variable of type char *
char color[] = "blue";

char *colorPtr = "blue";

– Remember that strings represented as character arrays end with
'\0'

- color has 5 elements

 Inputting strings
– Use scanf

scanf("%s", word);

- Copies input into word[]
- Do not need & (because a string is a pointer)

– Remember to leave room in the array for '\0'

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

13

Common Programming Error 8.3

Processing a single character as a string. A
string is a pointer—probably a respectably
large integer. However, a character is a small
integer (ASCII values range 0–255). On many
systems this causes an error, because low
memory addresses are reserved for special
purposes such as operating-system interrupt
handlers—so “access violations” occur.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

14

Common Programming Error 8.4

Passing a character as an argument to a
function when a string is expected is a
syntax error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

15

Common Programming Error 8.5

Passing a string as an argument to a
function when a character is expected is
a syntax error.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

16

8.3 Character Handling Library

Character handling library
– Includes functions to perform useful tests and

manipulations of character data
– Each function receives a character (an int) or EOF as an

argument

The following slides contain a table of all the
functions in <ctype.h>

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

17

 Prototype Function description

 int isdigit(int c); Returns a true value if c is a digit and 0 (false) otherwise.
 int isalpha(int c); Returns a true value if c is a letter and 0 otherwise.
 int isalnum(int c); Returns a true value if c is a digit or a letter and 0 otherwise.
 int isxdigit(int c); Returns a true value if c is a hexadecimal digit character and 0

otherwise. (See Appendix E, Number Systems, for
a detailed explanation of binary numbers, octal numbers, decimal
numbers and hexadecimal numbers.)

 int islower(int c); Returns a true value if c is a lowercase letter and 0 otherwise.

 int isupper(int c); Returns a true value if c is an uppercase letter and 0 otherwise.

 int tolower(int c); If c is an uppercase letter, tolower returns c as a lowercase
letter. Otherwise, tolower returns the argument unchanged.

Fig. 8.1 | Character-handling library functions. (Part 1 of 2.)

http://www.uml.org/

		
Prototype

		Function description

		
int isdigit(int c);

		Returns a true value if c is a digit and 0 (false) otherwise.

		
int isalpha(int c);

		Returns a true value if c is a letter and 0 otherwise.

		
int isalnum(int c);

		Returns a true value if c is a digit or a letter and 0 otherwise.

		
int isxdigit(int c);

		Returns a true value if c is a hexadecimal digit character and 0 otherwise. (See Appendix E, Number Systems, for
a de​tailed explanation of binary numbers, octal numbers, decimal numbers and hexadecimal numbers.)

		
int islower(int c);

		Returns a true value if c is a lowercase letter and 0 otherwise.

		
int isupper(int c);

		Returns a true value if c is an uppercase letter and 0 other​wise.

		
int tolower(int c);

		If c is an uppercase letter, tolower returns c as a lowercase letter. Otherwise, tolower returns the argument unchanged.

 2007 Pearson Education, Inc. All rights reserved.

18

 Prototype Function description

 int toupper(int c); If c is a lowercase letter, toupper returns c as an uppercase
letter. Otherwise, toupper returns the argument unchanged.

 int isspace(int c); Returns a true value if c is a white-space character—newline
('\n'), space (' '), form feed ('\f'), carriage return ('\r'),
horizontal tab ('\t') or vertical tab ('\v')—and 0 otherwise.

 int iscntrl(int c); Returns a true value if c is a control character and 0 otherwise.

 int ispunct(int c); Returns a true value if c is a printing character other
than a space, a digit, or a letter and returns 0 otherwise.

 int isprint(int c); Returns a true value if c is a printing character including
a space (' ') and returns 0 otherwise.

 int isgraph(int c); Returns a true value if c is a printing character other
than a space (' ') and returns 0 otherwise.

Fig. 8.1 | Character-handling library functions. (Part 2 of 2.)

http://www.uml.org/

		
Prototype

		Function description

		
int toupper(int c);

		If c is a lowercase letter, toupper returns c as an uppercase letter. Otherwise, toupper returns the argument unchanged.

		
int isspace(int c);

		Returns a true value if c is a white-space character—newline ('\n'), space (' '), form feed ('\f'), carriage return ('\r'), horizontal tab ('\t') or vertical tab ('\v')—and 0 otherwise.

		
int iscntrl(int c);

		Returns a true value if c is a control character and 0 other​wise.

		
int ispunct(int c);

		Returns a true value if c is a printing character other
than a space, a digit, or a letter and returns 0 otherwise.

		
int isprint(int c);

		Returns a true value if c is a printing character including
a space (' ') and returns 0 otherwise.

		
int isgraph(int c);

		Returns a true value if c is a printing character other
than a space (' ') and returns 0 otherwise.

 2007 Pearson Education, Inc. All rights reserved.

19

Error-Prevention Tip 8.2

When using functions from the character-
handling library, include the <ctype.h>
header.

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

20 1 /* Fig. 8.2: fig08_02.c

 2 Using functions isdigit, isalpha, isalnum, and isxdigit */

 3 #include <stdio.h>

 4 #include <ctype.h>

 5
 6 int main(void)

 7 {

 8 printf("%s\n%s%s\n%s%s\n\n", "According to isdigit: ",

 9 isdigit('8') ? "8 is a " : "8 is not a ", "digit",

10 isdigit('#') ? "# is a " : "# is not a ", "digit");
11
12 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",
13 "According to isalpha:",
14 isalpha('A') ? "A is a " : "A is not a ", "letter",
15 isalpha('b') ? "b is a " : "b is not a ", "letter",
16 isalpha('&') ? "& is a " : "& is not a ", "letter",
17 isalpha('4') ? "4 is a " : "4 is not a ", "letter");
18

Outline

fig08_02.c

(1 of 3)

isdigit tests if a character is a
decimal digit

isalpha tests if a character is a letter

http://www.uml.org/

		
1
/* Fig. 8.2: fig08_02.c

		
2
 Using functions isdigit, isalpha, isalnum, and isxdigit */

		
3
#include <stdio.h>

		
4
#include <ctype.h>

		
5

		
6
int main(void)

		
7
{

		
8
 printf("%s\n%s%s\n%s%s\n\n", "According to isdigit: ",

		
9
 isdigit('8') ? "8 is a " : "8 is not a ", "digit",

		
10
 isdigit('#') ? "# is a " : "# is not a ", "digit");

		
11

		
12
 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",

		
13
 "According to isalpha:",

		
14
 isalpha('A') ? "A is a " : "A is not a ", "letter",

		
15
 isalpha('b') ? "b is a " : "b is not a ", "letter",

		
16
 isalpha('&') ? "& is a " : "& is not a ", "letter",

		
17
 isalpha('4') ? "4 is a " : "4 is not a ", "letter");

		
18

 2007 Pearson Education,
Inc. All rights reserved.

2119 printf("%s\n%s%s\n%s%s\n%s%s\n\n",
20 "According to isalnum:",
21 isalnum('A') ? "A is a " : "A is not a ",
22 "digit or a letter",
23 isalnum('8') ? "8 is a " : "8 is not a ",
24 "digit or a letter",
25 isalnum('#') ? "# is a " : "# is not a ",
26 "digit or a letter");
27
28 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n%s%s\n",
29 "According to isxdigit:",
30 isxdigit('F') ? "F is a " : "F is not a ",
31 "hexadecimal digit",
32 isxdigit('J') ? "J is a " : "J is not a ",
33 "hexadecimal digit",
34 isxdigit('7') ? "7 is a " : "7 is not a ",
35 "hexadecimal digit",
36 isxdigit('$') ? "$ is a " : "$ is not a ",

Outline

fig08_02.c

(2 of 3)

isdigit tests if a character is a
decimal digit or a letter

isxdigit tests if a character is a
hexadecimal digit

http://www.uml.org/

		
19
 printf("%s\n%s%s\n%s%s\n%s%s\n\n",

		
20
 "According to isalnum:",

		
21
 isalnum('A') ? "A is a " : "A is not a ",

		
22
 "digit or a letter",

		
23
 isalnum('8') ? "8 is a " : "8 is not a ",

		
24
 "digit or a letter",

		
25
 isalnum('#') ? "# is a " : "# is not a ",

		
26
 "digit or a letter");

		
27

		
28
 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n%s%s\n",

		
29
 "According to isxdigit:",

		
30
 isxdigit('F') ? "F is a " : "F is not a ",

		
31
 "hexadecimal digit",

		
32
 isxdigit('J') ? "J is a " : "J is not a ",

		
33
 "hexadecimal digit",

		
34
 isxdigit('7') ? "7 is a " : "7 is not a ",

		
35
 "hexadecimal digit",

		
36
 isxdigit('$') ? "$ is a " : "$ is not a ",

		

 2007 Pearson Education,
Inc. All rights reserved.

2237 "hexadecimal digit",
38 isxdigit('f') ? "f is a " : "f is not a ",
39 "hexadecimal digit");
40
41 return 0; /* indicates successful termination */
42
43 } /* end main */

According to isdigit:
8 is a digit
is not a digit

According to isalpha:
A is a letter
b is a letter
& is not a letter
4 is not a letter

According to isalnum:
A is a digit or a letter
8 is a digit or a letter
is not a digit or a letter

According to isxdigit:
F is a hexadecimal digit
J is not a hexadecimal digit
7 is a hexadecimal digit
$ is not a hexadecimal digit
f is a hexadecimal digit

Outline

fig08_02.c

(3 of 3)

http://www.uml.org/

		
37
 "hexadecimal digit",

		
38
 isxdigit('f') ? "f is a " : "f is not a ",

		
39
 "hexadecimal digit");

		
40

		
41
 return 0; /* indicates successful termination */

		
42

		
43
} /* end main */

		According to isdigit:

8 is a digit

is not a digit

According to isalpha:

A is a letter

b is a letter

& is not a letter

4 is not a letter

According to isalnum:

A is a digit or a letter

8 is a digit or a letter

is not a digit or a letter

According to isxdigit:

F is a hexadecimal digit

J is not a hexadecimal digit

7 is a hexadecimal digit

$ is not a hexadecimal digit

f is a hexadecimal digit

 2007 Pearson Education,
Inc. All rights reserved.

23 1 /* Fig. 8.3: fig08_03.c

 2 Using functions islower, isupper, tolower, toupper */

 3 #include <stdio.h>

 4 #include <ctype.h>

 5
 6 int main(void)

 7 {

 8 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",

 9 "According to islower:",

10 islower('p') ? "p is a " : "p is not a ",
11 "lowercase letter",
12 islower('P') ? "P is a " : "P is not a ",
13 "lowercase letter",
14 islower('5') ? "5 is a " : "5 is not a ",
15 "lowercase letter",
16 islower('!') ? "! is a " : "! is not a ",
17 "lowercase letter");
18
19 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",
20 "According to isupper:",
21 isupper('D') ? "D is an " : "D is not an ",
22 "uppercase letter",
23 isupper('d') ? "d is an " : "d is not an ",
24 "uppercase letter",
25 isupper('8') ? "8 is an " : "8 is not an ",
26 "uppercase letter",
27 isupper('$') ? "$ is an " : "$ is not an ",
28 "uppercase letter");
29

Outline

fig08_03.c

(1 of 2)

islower tests if a character is a
lowercase letter

isupper tests if a character is an
uppercase letter

http://www.uml.org/

		
1
/* Fig. 8.3: fig08_03.c

		
2
 Using functions islower, isupper, tolower, toupper */

		
3
#include <stdio.h>

		
4
#include <ctype.h>

		
5

		
6
int main(void)

		
7
{

		
8
 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",

		
9
 "According to islower:",

		
10
 islower('p') ? "p is a " : "p is not a ",

		
11
 "lowercase letter",

		
12
 islower('P') ? "P is a " : "P is not a ",

		
13
 "lowercase letter",

		
14
 islower('5') ? "5 is a " : "5 is not a ",

		
15
 "lowercase letter",

		
16
 islower('!') ? "! is a " : "! is not a ",

		
17
 "lowercase letter");

		
18

		
19
 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",

		
20
 "According to isupper:",

		
21
 isupper('D') ? "D is an " : "D is not an ",

		
22
 "uppercase letter",

		
23
 isupper('d') ? "d is an " : "d is not an ",

		
24
 "uppercase letter",

		
25
 isupper('8') ? "8 is an " : "8 is not an ",

		
26
 "uppercase letter",

		
27
 isupper('$') ? "$ is an " : "$ is not an ",

		
28
 "uppercase letter");

		
29

 2007 Pearson Education,
Inc. All rights reserved.

2430 printf("%s%c\n%s%c\n%s%c\n%s%c\n",
31 "u converted to uppercase is ", toupper('u'),
32 "7 converted to uppercase is ", toupper('7'),
33 "$ converted to uppercase is ", toupper('$'),
34 "L converted to lowercase is ", tolower('L'));
35
36 return 0; /* indicates successful termination */
37
38 } /* end main */

According to islower:
p is a lowercase letter
P is not a lowercase letter
5 is not a lowercase letter
! is not a lowercase letter

According to isupper:
D is an uppercase letter
d is not an uppercase letter
8 is not an uppercase letter
$ is not an uppercase letter

u converted to uppercase is U
7 converted to uppercase is 7
$ converted to uppercase is $
L converted to lowercase is l

Outline

fig08_03.c

(2 of 2)

toupper and tolower convert
letters to upper or lower case

http://www.uml.org/

		
30
 printf("%s%c\n%s%c\n%s%c\n%s%c\n",

		
31
 "u converted to uppercase is ", toupper('u'),

		
32
 "7 converted to uppercase is ", toupper('7'),

		
33
 "$ converted to uppercase is ", toupper('$'),

		
34
 "L converted to lowercase is ", tolower('L'));

		
35

		
36
 return 0; /* indicates successful termination */

		
37

		
38
} /* end main */

		According to islower:

p is a lowercase letter

P is not a lowercase letter

5 is not a lowercase letter

! is not a lowercase letter

According to isupper:

D is an uppercase letter

d is not an uppercase letter

8 is not an uppercase letter

$ is not an uppercase letter

u converted to uppercase is U

7 converted to uppercase is 7

$ converted to uppercase is $

L converted to lowercase is l

 2007 Pearson Education,
Inc. All rights reserved.

25 1 /* Fig. 8.4: fig08_04.c

 2 Using functions isspace, iscntrl, ispunct, isprint, isgraph */

 3 #include <stdio.h>

 4 #include <ctype.h>

 5
 6 int main(void)

 7 {

 8 printf("%s\n%s%s%s\n%s%s%s\n%s%s\n\n",

 9 "According to isspace:",

10 "Newline", isspace('\n') ? " is a " : " is not a ",
11 "whitespace character", "Horizontal tab",
12 isspace('\t') ? " is a " : " is not a ",
13 "whitespace character",
14 isspace('%') ? "% is a " : "% is not a ",
15 "whitespace character");
16
17 printf("%s\n%s%s%s\n%s%s\n\n", "According to iscntrl:",
18 "Newline", iscntrl('\n') ? " is a " : " is not a ",
19 "control character", iscntrl('$') ? "$ is a " :
20 "$ is not a ", "control character");

Outline

fig08_04.c

(1 of 3)

isspace tests if a character is a
whitespace character

iscntrl tests if a character is a
control character

http://www.uml.org/

		
1
/* Fig. 8.4: fig08_04.c

		
2
 Using functions isspace, iscntrl, ispunct, isprint, isgraph */

		
3
#include <stdio.h>

		
4
#include <ctype.h>

		
5

		
6
int main(void)

		
7
{

		
8
 printf("%s\n%s%s%s\n%s%s%s\n%s%s\n\n",

		
9
 "According to isspace:",

		
10
 "Newline", isspace('\n') ? " is a " : " is not a ",

		
11
 "whitespace character", "Horizontal tab",

		
12
 isspace('\t') ? " is a " : " is not a ",

		
13
 "whitespace character",

		
14
 isspace('%') ? "% is a " : "% is not a ",

		
15
 "whitespace character");

		
16

		
17
 printf("%s\n%s%s%s\n%s%s\n\n", "According to iscntrl:",

		
18
 "Newline", iscntrl('\n') ? " is a " : " is not a ",

		
19
 "control character", iscntrl('$') ? "$ is a " :

		
20
 "$ is not a ", "control character");

 2007 Pearson Education,
Inc. All rights reserved.

2621
22 printf("%s\n%s%s\n%s%s\n%s%s\n\n",
23 "According to ispunct:",
24 ispunct(';') ? "; is a " : "; is not a ",
25 "punctuation character",
26 ispunct('Y') ? "Y is a " : "Y is not a ",
27 "punctuation character",
28 ispunct('#') ? "# is a " : "# is not a ",
29 "punctuation character");
30
31 printf("%s\n%s%s\n%s%s%s\n\n", "According to isprint:",
32 isprint('$') ? "$ is a " : "$ is not a ",
33 "printing character",
34 "Alert", isprint('\a') ? " is a " : " is not a ",
35 "printing character");
36

Outline

fig08_04.c

(2 of 3)
ispunct tests if a character is a

punctuation character

isprint tests if a character is a
printing character

http://www.uml.org/

		
21

		
22
 printf("%s\n%s%s\n%s%s\n%s%s\n\n",

		
23
 "According to ispunct:",

		
24
 ispunct(';') ? "; is a " : "; is not a ",

		
25
 "punctuation character",

		
26
 ispunct('Y') ? "Y is a " : "Y is not a ",

		
27
 "punctuation character",

		
28
 ispunct('#') ? "# is a " : "# is not a ",

		
29
 "punctuation character");

		
30

		
31
 printf("%s\n%s%s\n%s%s%s\n\n", "According to isprint:",

		
32
 isprint('$') ? "$ is a " : "$ is not a ",

		
33
 "printing character",

		
34
 "Alert", isprint('\a') ? " is a " : " is not a ",

		
35
 "printing character");

		
36

 2007 Pearson Education,
Inc. All rights reserved.

2737 printf("%s\n%s%s\n%s%s%s\n", "According to isgraph:",
38 isgraph('Q') ? "Q is a " : "Q is not a ",
39 "printing character other than a space",
40 "Space", isgraph(' ') ? " is a " : " is not a ",
41 "printing character other than a space");
42
43 return 0; /* indicates successful termination */
44
45 } /* end main */

According to isspace:
Newline is a whitespace character
Horizontal tab is a whitespace character
% is not a whitespace character

According to iscntrl:
Newline is a control character
$ is not a control character

According to ispunct:
; is a punctuation character
Y is not a punctuation character
is a punctuation character

According to isprint:
$ is a printing character
Alert is not a printing character

According to isgraph:
Q is a printing character other than a space
Space is not a printing character other than a space

Outline

fig08_04.c

(3 of 3)

isgraph tests if a character is a
printing character that is not a space

http://www.uml.org/

		
37
 printf("%s\n%s%s\n%s%s%s\n", "According to isgraph:",

		
38
 isgraph('Q') ? "Q is a " : "Q is not a ",

		
39
 "printing character other than a space",

		
40
 "Space", isgraph(' ') ? " is a " : " is not a ",

		
41
 "printing character other than a space");

		
42

		
43
 return 0; /* indicates successful termination */

		
44

		
45
} /* end main */

		According to isspace:

Newline is a whitespace character

Horizontal tab is a whitespace character

% is not a whitespace character

According to iscntrl:

Newline is a control character

$ is not a control character

According to ispunct:

; is a punctuation character

Y is not a punctuation character

is a punctuation character

According to isprint:

$ is a printing character

Alert is not a printing character

According to isgraph:

Q is a printing character other than a space

Space is not a printing character other than a space

 2007 Pearson Education, Inc. All rights reserved.

28

8.4 String-Conversion Functions

Conversion functions
– In <stdlib.h> (general utilities library)

Convert strings of digits to integer and floating-
point values

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

29

 Function prototype Function description

 double atof(const char *nPtr); Converts the string nPtr to double.

 int atoi(const char *nPtr); Converts the string nPtr to int.

 long atol(const char *nPtr); Converts the string nPtr to long int.

 double strtod(const char *nPtr, char **endPtr);

 Converts the string nPtr to double.

 long strtol(const char *nPtr, char **endPtr, int base);

 Converts the string nPtr to long.

 unsigned long strtoul(const char *nPtr, char **endPtr, int base);

 Converts the string nPtr to unsigned long.

Fig. 8.5 | String-conversion functions of the general utilities library.

http://www.uml.org/

		
Function prototype

		Function description

		
double atof(const char *nPtr);

		Converts the string nPtr to double.

		
int atoi(const char *nPtr);

		Converts the string nPtr to int.

		
long atol(const char *nPtr);

		Converts the string nPtr to long int.

		
double strtod(const char *nPtr, char **endPtr);

		

		Converts the string nPtr to double.

		
long strtol(const char *nPtr, char **endPtr, int base);

		

		Converts the string nPtr to long.

		
unsigned long strtoul(const char *nPtr, char **endPtr, int base);

		

		Converts the string nPtr to unsigned long.

 2007 Pearson Education, Inc. All rights reserved.

30

Error-Prevention Tip 8.3

When using functions from the general
utilities library, include the <stdlib.h>
header.

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

31 1 /* Fig. 8.6: fig08_06.c

 2 Using atof */

 3 #include <stdio.h>

 4 #include <stdlib.h>

 5
 6 int main(void)

 7 {

 8 double d; /* variable to hold converted string */

 9
10 d = atof("99.0");
11
12 printf("%s%.3f\n%s%.3f\n",
13 "The string \"99.0\" converted to double is ", d,
14 "The converted value divided by 2 is ",
15 d / 2.0);
16
17 return 0; /* indicates successful termination */
18
19 } /* end main */

The string "99.0" converted to double is 99.000
The converted value divided by 2 is 49.500

Outline

fig08_06.c

atof converts a string to a double

http://www.uml.org/

		
1
/* Fig. 8.6: fig08_06.c

		
2
 Using atof */

		
3
#include <stdio.h>

		
4
#include <stdlib.h>

		
5

		
6
int main(void)

		
7
{

		
8
 double d; /* variable to hold converted string */

		
9

		
10
 d = atof("99.0");

		
11

		
12
 printf("%s%.3f\n%s%.3f\n",

		
13
 "The string \"99.0\" converted to double is ", d,

		
14
 "The converted value divided by 2 is ",

		
15
 d / 2.0);

		
16

		
17
 return 0; /* indicates successful termination */

		
18

		
19
} /* end main */

		The string "99.0" converted to double is 99.000

The converted value divided by 2 is 49.500

 2007 Pearson Education,
Inc. All rights reserved.

32 1 /* Fig. 8.7: fig08_07.c

 2 Using atoi */

 3 #include <stdio.h>

 4 #include <stdlib.h>

 5
 6 int main(void)

 7 {

 8 int i; /* variable to hold converted string */

 9
10 i = atoi("2593");
11
12 printf("%s%d\n%s%d\n",
13 "The string \"2593\" converted to int is ", i,
14 "The converted value minus 593 is ", i - 593);
15
16 return 0; /* indicates successful termination */
17
18 } /* end main */

The string "2593" converted to int is 2593
The converted value minus 593 is 2000

Outline

fig08_07.c

atoi converts a string to an int

http://www.uml.org/

		
1
/* Fig. 8.7: fig08_07.c

		
2
 Using atoi */

		
3
#include <stdio.h>

		
4
#include <stdlib.h>

		
5

		
6
int main(void)

		
7
{

		
8
 int i; /* variable to hold converted string */

		
9

		
10
 i = atoi("2593");

		
11

		
12
 printf("%s%d\n%s%d\n",

		
13
 "The string \"2593\" converted to int is ", i,

		
14
 "The converted value minus 593 is ", i - 593);

		
15

		
16
 return 0; /* indicates successful termination */

		
17

		
18
} /* end main */

		The string "2593" converted to int is 2593

The converted value minus 593 is 2000

 2007 Pearson Education,
Inc. All rights reserved.

33 1 /* Fig. 8.8: fig08_08.c

 2 Using atol */

 3 #include <stdio.h>

 4 #include <stdlib.h>

 5
 6 int main(void)

 7 {

 8 long l; /* variable to hold converted string */

 9
10 l = atol("1000000");
11
12 printf("%s%ld\n%s%ld\n",
13 "The string \"1000000\" converted to long int is ", l,
14 "The converted value divided by 2 is ", l / 2);
15
16 return 0; /* indicates successful termination */
17
18 } /* end main */

The string "1000000" converted to long int is 1000000
The converted value divided by 2 is 500000

Outline

fig08_08.c

atol converts a string to a long

http://www.uml.org/

		
1
/* Fig. 8.8: fig08_08.c

		
2
 Using atol */

		
3
#include <stdio.h>

		
4
#include <stdlib.h>

		
5

		
6
int main(void)

		
7
{

		
8
 long l; /* variable to hold converted string */

		
9

		
10
 l = atol("1000000");

		
11

		
12
 printf("%s%ld\n%s%ld\n",

		
13
 "The string \"1000000\" converted to long int is ", l,

		
14
 "The converted value divided by 2 is ", l / 2);

		
15

		
16
 return 0; /* indicates successful termination */

		
17

		
18
} /* end main */

		The string "1000000" converted to long int is 1000000

The converted value divided by 2 is 500000

 2007 Pearson Education,
Inc. All rights reserved.

34 1 /* Fig. 8.9: fig08_09.c

 2 Using strtod */

 3 #include <stdio.h>

 4 #include <stdlib.h>

 5
 6 int main(void)

 7 {

 8 /* initialize string pointer */

 9 const char *string = "51.2% are admitted"; /* initialize string */

10
11 double d; /* variable to hold converted sequence */
12 char *stringPtr; /* create char pointer */
13
14 d = strtod(string, &stringPtr);
15
16 printf("The string \"%s\" is converted to the\n", string);
17 printf("double value %.2f and the string \"%s\"\n", d, stringPtr);
18
19 return 0; /* indicates successful termination */
20
21 } /* end main */

The string "51.2% are admitted" is converted to the
double value 51.20 and the string "% are admitted"

Outline

fig08_09.c

strtod converts a piece of a string to a double

http://www.uml.org/

		
1
/* Fig. 8.9: fig08_09.c

		
2
 Using strtod */

		
3
#include <stdio.h>

		
4
#include <stdlib.h>

		
5

		
6
int main(void)

		
7
{

		
8
 /* initialize string pointer */

		
9
 const char *string = "51.2% are admitted"; /* initialize string */

		
10

		
11
 double d; /* variable to hold converted sequence */

		
12
 char *stringPtr; /* create char pointer */

		
13

		
14
 d = strtod(string, &stringPtr);

		
15

		
16
 printf("The string \"%s\" is converted to the\n", string);

		
17
 printf("double value %.2f and the string \"%s\"\n", d, stringPtr);

		
18

		
19
 return 0; /* indicates successful termination */

		
20

		
21
} /* end main */

		The string "51.2% are admitted" is converted to the

double value 51.20 and the string "% are admitted"

 2007 Pearson Education,
Inc. All rights reserved.

35 1 /* Fig. 8.10: fig08_10.c

 2 Using strtol */

 3 #include <stdio.h>

 4 #include <stdlib.h>

 5
 6 int main(void)

 7 {

 8 const char *string = "-1234567abc"; /* initialize string pointer */

 9
10 char *remainderPtr; /* create char pointer */
11 long x; /* variable to hold converted sequence */
12
13 x = strtol(string, &remainderPtr, 0);
14
15 printf("%s\"%s\"\n%s%ld\n%s\"%s\"\n%s%ld\n",
16 "The original string is ", string,
17 "The converted value is ", x,
18 "The remainder of the original string is ",
19 remainderPtr,
20 "The converted value plus 567 is ", x + 567);
21
22 return 0; /* indicates successful termination */
23
24 } /* end main */

The original string is "-1234567abc"
The converted value is -1234567
The remainder of the original string is "abc"
The converted value plus 567 is -1234000

Outline

fig08_10.c

strtol converts a piece of a string to a long

http://www.uml.org/

		
1
/* Fig. 8.10: fig08_10.c

		
2
 Using strtol */

		
3
#include <stdio.h>

		
4
#include <stdlib.h>

		
5

		
6
int main(void)

		
7
{

		
8
 const char *string = "-1234567abc"; /* initialize string pointer */

		
9

		
10
 char *remainderPtr; /* create char pointer */

		
11
 long x; /* variable to hold converted sequence */

		
12

		
13
 x = strtol(string, &remainderPtr, 0);

		
14

		
15
 printf("%s\"%s\"\n%s%ld\n%s\"%s\"\n%s%ld\n",

		
16
 "The original string is ", string,

		
17
 "The converted value is ", x,

		
18
 "The remainder of the original string is ",

		
19
 remainderPtr,

		
20
 "The converted value plus 567 is ", x + 567);

		
21

		
22
 return 0; /* indicates successful termination */

		
23

		
24
} /* end main */

		The original string is "-1234567abc"

The converted value is -1234567

The remainder of the original string is "abc"

The converted value plus 567 is -1234000

 2007 Pearson Education,
Inc. All rights reserved.

36 1 /* Fig. 8.11: fig08_11.c

 2 Using strtoul */

 3 #include <stdio.h>

 4 #include <stdlib.h>

 5
 6 int main(void)

 7 {

 8 const char *string = "1234567abc"; /* initialize string pointer */

 9 unsigned long x; /* variable to hold converted sequence */

10 char *remainderPtr; /* create char pointer */
11
12 x = strtoul(string, &remainderPtr, 0);
13
14 printf("%s\"%s\"\n%s%lu\n%s\"%s\"\n%s%lu\n",
15 "The original string is ", string,
16 "The converted value is ", x,
17 "The remainder of the original string is ",
18 remainderPtr,
19 "The converted value minus 567 is ", x - 567);
20
21 return 0; /* indicates successful termination */
22
23 } /* end main */

The original string is "1234567abc"
The converted value is 1234567
The remainder of the original string is "abc"
The converted value minus 567 is 1234000

Outline

fig08_11.c

strtoul converts a piece of a string to
an unsigned long

http://www.uml.org/

		
1
/* Fig. 8.11: fig08_11.c

		
2
 Using strtoul */

		
3
#include <stdio.h>

		
4
#include <stdlib.h>

		
5

		
6
int main(void)

		
7
{

		
8
 const char *string = "1234567abc"; /* initialize string pointer */

		
9
 unsigned long x; /* variable to hold converted sequence */

		
10
 char *remainderPtr; /* create char pointer */

		
11

		
12
 x = strtoul(string, &remainderPtr, 0);

		
13

		
14
 printf("%s\"%s\"\n%s%lu\n%s\"%s\"\n%s%lu\n",

		
15
 "The original string is ", string,

		
16
 "The converted value is ", x,

		
17
 "The remainder of the original string is ",

		
18
 remainderPtr,

		
19
 "The converted value minus 567 is ", x - 567);

		
20

		
21
 return 0; /* indicates successful termination */

		
22

		
23
} /* end main */

		The original string is "1234567abc"

The converted value is 1234567

The remainder of the original string is "abc"

The converted value minus 567 is 1234000

 2007 Pearson Education, Inc. All rights reserved.

37

8.5 Standard Input/Output Library
Functions
 Functions in <stdio.h>
Used to manipulate character and string data

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

38

Fig. 8.12 | Standard input/output library character and string functions.

 Function prototype Function description

 int getchar(void); Inputs the next character from the standard input and
returns it as an integer.

 char *gets(char *s); Inputs characters from the standard input into the array
s until a newline or end-of-file character is encountered.
A terminating null character is appended to the array.
Returns the string inputted into s. Note that an error will
occur if s is not large enough to hold the string.

 int putchar(int c); Prints the character stored in c and returns it as an integer.

 int puts(const char *s); Prints the string s followed by a newline character. Returns
a non-zero integer if successful, or EOF if an error occurs.

 int sprintf(char *s, const char *format, ...);

 Equivalent to printf, except the output is stored in
the array s instead of printed on the screen. Returns
the number of characters written to s, or EOF if an
error occurs.

 int sscanf(char *s, const char *format, ...);

 Equivalent to scanf, except the input is read from
the array s rather than from the keyboard. Returns the
number of items successfully read by the function, or
EOF if an error occurs.

http://www.uml.org/

		
Function prototype

		Function description

		
int getchar(void);

		Inputs the next character from the standard input and
re​turns it as an integer.

		
char *gets(char *s);

		Inputs characters from the standard input into the array
s until a newline or end-of-file character is encountered.
A terminating null character is appended to the array. Returns the string inputted into s. Note that an error will occur if s is not large enough to hold the string.

		
int putchar(int c);

		Prints the character stored in c and returns it as an integer.

		
int puts(const char *s);

		Prints the string s followed by a newline character. Returns a non-zero integer if successful, or EOF if an error occurs.

		
int sprintf(char *s, const char *format, ...);

		

		Equivalent to printf, except the output is stored in
the array s instead of printed on the screen. Returns
the number of characters written to s, or EOF if an
error occurs.

		
int sscanf(char *s, const char *format, ...);

		

		Equivalent to scanf, except the input is read from
the array s rather than from the keyboard. Returns the number of items successfully read by the function, or
EOF if an error occurs.

 2007 Pearson Education, Inc. All rights reserved.

39

Error-Prevention Tip 8.4

When using functions from the standard
input/output library, include the <stdio.h>
header.

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

40 1 /* Fig. 8.13: fig08_13.c

 2 Using gets and putchar */

 3 #include <stdio.h>

 4
 5 void reverse(const char * const sPtr); /* prototype */

 6
 7 int main(void)

 8 {

 9 char sentence[80]; /* create char array */

10
11 printf("Enter a line of text:\n");
12
13 /* use gets to read line of text */
14 gets(sentence);
15
16 printf("\nThe line printed backward is:\n");
17 reverse(sentence);
18
19 return 0; /* indicates successful termination */
20
21 } /* end main */

Outline

fig08_13.c

(1 of 2)

gets reads a line of text from the user

http://www.uml.org/

		
1
/* Fig. 8.13: fig08_13.c

		
2
 Using gets and putchar */

		
3
#include <stdio.h>

		
4

		
5
void reverse(const char * const sPtr); /* prototype */

		
6

		
7
int main(void)

		
8
{

		
9
 char sentence[80]; /* create char array */

		
10

		
11
 printf("Enter a line of text:\n");

		
12

		
13
 /* use gets to read line of text */

		
14
 gets(sentence);

		
15

		
16
 printf("\nThe line printed backward is:\n");

		
17
 reverse(sentence);

		
18

		
19
 return 0; /* indicates successful termination */

		
20

		
21
} /* end main */

 2007 Pearson Education,
Inc. All rights reserved.

4122
23 /* recursively outputs characters in string in reverse order */
24 void reverse(const char * const sPtr)
25 {
26 /* if end of the string */
27 if (sPtr[0] == '\0') { /* base case */
28 return;
29 } /* end if */
30 else { /* if not end of the string */
31 reverse(&sPtr[1]); /* recursion step */
32
33 putchar(sPtr[0]); /* use putchar to display character */
34 } /* end else */
35
36 } /* end function reverse */

Enter a line of text:
Characters and Strings

The line printed backward is:
sgnirtS dna sretcarahC

Enter a line of text:
able was I ere I saw elba

The line printed backward is:
able was I ere I saw elba

Outline

fig08_13.c

(2 of 2)

putchar prints a single character on the screen

http://www.uml.org/

		
22

		
23
/* recursively outputs characters in string in reverse order */

		
24
void reverse(const char * const sPtr)

		
25
{

		
26
 /* if end of the string */

		
27
 if (sPtr[0] == '\0') { /* base case */

		
28
 return;

		
29
 } /* end if */

		
30
 else { /* if not end of the string */

		
31
 reverse(&sPtr[1]); /* recursion step */

		
32

		
33
 putchar(sPtr[0]); /* use putchar to display character */

		
34
 } /* end else */

		
35

		
36
} /* end function reverse */

		Enter a line of text:

Characters and Strings

The line printed backward is:

sgnirtS dna sretcarahC

		

		Enter a line of text:

able was I ere I saw elba

The line printed backward is:

able was I ere I saw elba

 2007 Pearson Education,
Inc. All rights reserved.

42 1 /* Fig. 8.14: fig08_14.c

 2 Using getchar and puts */

 3 #include <stdio.h>

 4
 5 int main(void)

 6 {

 7 char c; /* variable to hold character input by user */

 8 char sentence[80]; /* create char array */

 9 int i = 0; /* initialize counter i */

10
11 /* prompt user to enter line of text */
12 puts("Enter a line of text:");
13
14 /* use getchar to read each character */
15 while ((c = getchar()) != '\n') {
16 sentence[i++] = c;
17 } /* end while */
18
19 sentence[i] = '\0'; /* terminate string */
20

Outline

fig08_14.c

(1 of 2)

puts prints a line of text on the screen

getchar reads a single character from the user

http://www.uml.org/

		
1
/* Fig. 8.14: fig08_14.c

		
2
 Using getchar and puts */

		
3
#include <stdio.h>

		
4

		
5
int main(void)

		
6
{

		
7
 char c; /* variable to hold character input by user */

		
8
 char sentence[80]; /* create char array */

		
9
 int i = 0; /* initialize counter i */

		
10

		
11
 /* prompt user to enter line of text */

		
12
 puts("Enter a line of text:");

		
13

		
14
 /* use getchar to read each character */

		
15
 while ((c = getchar()) != '\n') {

		
16
 sentence[i++] = c;

		
17
 } /* end while */

		
18

		
19
 sentence[i] = '\0'; /* terminate string */

		
20

 2007 Pearson Education,
Inc. All rights reserved.

4321 /* use puts to display sentence */
22 puts("\nThe line entered was:");
23 puts(sentence);
24
25 return 0; /* indicates successful termination */
26
27 } /* end main */

Enter a line of text:
This is a test.

The line entered was:
This is a test.

Outline

fig08_14.c

(2 of 2)

http://www.uml.org/

		
21
 /* use puts to display sentence */

		
22
 puts("\nThe line entered was:");

		
23
 puts(sentence);

		
24

		
25
 return 0; /* indicates successful termination */

		
26

		
27
} /* end main */

		Enter a line of text:

This is a test.

The line entered was:

This is a test.

 2007 Pearson Education,
Inc. All rights reserved.

44 1 /* Fig. 8.15: fig08_15.c

 2 Using sprintf */

 3 #include <stdio.h>

 4
 5 int main(void)

 6 {

 7 char s[80]; /* create char array */

 8 int x; /* x value to be input */

 9 double y; /* y value to be input */

10
11 printf("Enter an integer and a double:\n");
12 scanf("%d%lf", &x, &y);
13
14 sprintf(s, "integer:%6d\ndouble:%8.2f", x, y);
15
16 printf("%s\n%s\n",
17 "The formatted output stored in array s is:", s);
18
19 return 0; /* indicates successful termination */
20
21 } /* end main */

Enter an integer and a double:
298 87.375
The formatted output stored in array s is:
integer: 298
double: 87.38

Outline

fig08_15.c

sprintf prints a line of text into an array
like printf prints text on the screen

http://www.uml.org/

		
1
/* Fig. 8.15: fig08_15.c

		
2
 Using sprintf */

		
3
#include <stdio.h>

		
4

		
5
int main(void)

		
6
{

		
7
 char s[80]; /* create char array */

		
8
 int x; /* x value to be input */

		
9
 double y; /* y value to be input */

		
10

		
11
 printf("Enter an integer and a double:\n");

		
12
 scanf("%d%lf", &x, &y);

		
13

		
14
 sprintf(s, "integer:%6d\ndouble:%8.2f", x, y);

		
15

		
16
 printf("%s\n%s\n",

		
17
 "The formatted output stored in array s is:", s);

		
18

		
19
 return 0; /* indicates successful termination */

		
20

		
21
} /* end main */

		Enter an integer and a double:

298 87.375

The formatted output stored in array s is:

integer: 298

double: 87.38

 2007 Pearson Education,
Inc. All rights reserved.

45 1 /* Fig. 8.16: fig08_16.c

 2 Using sscanf */

 3 #include <stdio.h>

 4
 5 int main(void)

 6 {

 7 char s[] = "31298 87.375"; /* initialize array s */

 8 int x; /* x value to be input */

 9 double y; /* y value to be input */

10
11 sscanf(s, "%d%lf", &x, &y);
12
13 printf("%s\n%s%6d\n%s%8.3f\n",
14 "The values stored in character array s are:",
15 "integer:", x, "double:", y);
16
17 return 0; /* indicates successful termination */
18
19 } /* end main */

The values stored in character array s are:
integer: 31298
double: 87.375

Outline

fig08_16.c

sscanf reads a line of text from an array
like scanf reads text from the user

http://www.uml.org/

		
1
/* Fig. 8.16: fig08_16.c

		
2
 Using sscanf */

		
3
#include <stdio.h>

		
4

		
5
int main(void)

		
6
{

		
7
 char s[] = "31298 87.375"; /* initialize array s */

		
8
 int x; /* x value to be input */

		
9
 double y; /* y value to be input */

		
10

		
11
 sscanf(s, "%d%lf", &x, &y);

		
12

		
13
 printf("%s\n%s%6d\n%s%8.3f\n",

		
14
 "The values stored in character array s are:",

		
15
 "integer:", x, "double:", y);

		
16

		
17
 return 0; /* indicates successful termination */

		
18

		
19
} /* end main */

		The values stored in character array s are:

integer: 31298

double: 87.375

 2007 Pearson Education, Inc. All rights reserved.

46

8.6 String Manipulation Functions of the
String Handling Library
 String handling library has functions to

– Manipulate string data
– Search strings
– Tokenize strings
– Determine string length

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

47

Fig. 8.17 | String-manipulation functions of the string-handling library.

 Function prototype Function description
 char *strcpy(char *s1, const char *s2)

 Copies string s2 into array s1. The value of s1 is returned.

 char *strncpy(char *s1, const char *s2, size_t n)

 Copies at most n characters of string s2 into array s1. The value of
s1 is returned.

 char *strcat(char *s1, const char *s2)

 Appends string s2 to array s1. The first character of s2 overwrites
the terminating null character of s1. The value of s1 is returned.

 char *strncat(char *s1, const char *s2, size_t n)

 Appends at most n characters of string s2 to array s1. The first
character of s2 overwrites the terminating null character of s1.
The value of s1 is returned.

http://www.uml.org/

		
Function prototype

		Function description

		
char *strcpy(char *s1, const char *s2)

		

		Copies string s2 into array s1. The value of s1 is returned.

		
char *strncpy(char *s1, const char *s2, size_t n)

		

		Copies at most n characters of string s2 into array s1. The value of s1 is returned.

		
char *strcat(char *s1, const char *s2)

		

		Appends string s2 to array s1. The first character of s2 overwrites the terminating null character of s1. The value of s1 is returned.

		
char *strncat(char *s1, const char *s2, size_t n)

		

		Appends at most n characters of string s2 to array s1. The first character of s2 overwrites the terminating null character of s1.
The value of s1 is returned.

 2007 Pearson Education, Inc. All rights reserved.

48

Portability Tip 8.2

Type size_t is a system-dependent
synonym for either type unsigned
long or type unsigned int.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

49

Error-Prevention Tip 8.5

When using functions from the string-
handling library, include the <string.h>
header.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

50

Common Programming Error 8.6

Not appending a terminating null character
to the first argument of a strncpy when the
third argument is less than or equal to the
length of the string in the second argument.

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

51 1 /* Fig. 8.18: fig08_18.c

 2 Using strcpy and strncpy */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 char x[] = "Happy Birthday to You"; /* initialize char array x */

 9 char y[25]; /* create char array y */

10 char z[15]; /* create char array z */
11
12 /* copy contents of x into y */
13 printf("%s%s\n%s%s\n",
14 "The string in array x is: ", x,
15 "The string in array y is: ", strcpy(y, x));
16
17 /* copy first 14 characters of x into z. Does not copy null
18 character */
19 strncpy(z, x, 14);
20
21 z[14] = '\0'; /* terminate string in z */
22 printf("The string in array z is: %s\n", z);
23
24 return 0; /* indicates successful termination */
25
26 } /* end main */

The string in array x is: Happy Birthday to You
The string in array y is: Happy Birthday to You
The string in array z is: Happy Birthday

Outline

fig08_18.c

strcpy copies string x
into character array y

strncpy copies 14 characters of
string x into character array z

Note that strncpy does not
automatically append a null character

http://www.uml.org/

		
1
/* Fig. 8.18: fig08_18.c

		
2
 Using strcpy and strncpy */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 char x[] = "Happy Birthday to You"; /* initialize char array x */

		
9
 char y[25]; /* create char array y */

		
10
 char z[15]; /* create char array z */

		
11

		
12
 /* copy contents of x into y */

		
13
 printf("%s%s\n%s%s\n",

		
14
 "The string in array x is: ", x,

		
15
 "The string in array y is: ", strcpy(y, x));

		
16

		
17
 /* copy first 14 characters of x into z. Does not copy null

		
18
 character */

		
19
 strncpy(z, x, 14);

		
20

		
21
 z[14] = '\0'; /* terminate string in z */

		
22
 printf("The string in array z is: %s\n", z);

		
23

		
24
 return 0; /* indicates successful termination */

		
25

		
26
} /* end main */

		The string in array x is: Happy Birthday to You

The string in array y is: Happy Birthday to You

The string in array z is: Happy Birthday

 2007 Pearson Education,
Inc. All rights reserved.

52 1 /* Fig. 8.19: fig08_19.c

 2 Using strcat and strncat */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 char s1[20] = "Happy "; /* initialize char array s1 */

 9 char s2[] = "New Year "; /* initialize char array s2 */

10 char s3[40] = ""; /* initialize char array s3 to empty */
11
12 printf("s1 = %s\ns2 = %s\n", s1, s2);
13
14 /* concatenate s2 to s1 */
15 printf("strcat(s1, s2) = %s\n", strcat(s1, s2));
16
17 /* concatenate first 6 characters of s1 to s3. Place '\0'
18 after last character */
19 printf("strncat(s3, s1, 6) = %s\n", strncat(s3, s1, 6));
20

Outline

fig08_19.c

(1 of 2)

strcat adds the characters of
string s2 to the end of string s1

strncat adds the first 6 characters of
string s1 to the end of string s3

http://www.uml.org/

		
1
/* Fig. 8.19: fig08_19.c

		
2
 Using strcat and strncat */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 char s1[20] = "Happy "; /* initialize char array s1 */

		
9
 char s2[] = "New Year "; /* initialize char array s2 */

		
10
 char s3[40] = ""; /* initialize char array s3 to empty */

		
11

		
12
 printf("s1 = %s\ns2 = %s\n", s1, s2);

		
13

		
14
 /* concatenate s2 to s1 */

		
15
 printf("strcat(s1, s2) = %s\n", strcat(s1, s2));

		
16

		
17
 /* concatenate first 6 characters of s1 to s3. Place '\0'

		
18
 after last character */

		
19
 printf("strncat(s3, s1, 6) = %s\n", strncat(s3, s1, 6));

		
20

 2007 Pearson Education,
Inc. All rights reserved.

5321 /* concatenate s1 to s3 */
22 printf("strcat(s3, s1) = %s\n", strcat(s3, s1));
23
24 return 0; /* indicates successful termination */
25
26 } /* end main */

s1 = Happy
s2 = New Year
strcat(s1, s2) = Happy New Year
strncat(s3, s1, 6) = Happy
strcat(s3, s1) = Happy Happy New Year

Outline

fig08_19.c

(2 of 2)

http://www.uml.org/

		
21
 /* concatenate s1 to s3 */

		
22
 printf("strcat(s3, s1) = %s\n", strcat(s3, s1));

		
23

		
24
 return 0; /* indicates successful termination */

		
25

		
26
} /* end main */

		s1 = Happy

s2 = New Year

strcat(s1, s2) = Happy New Year

strncat(s3, s1, 6) = Happy

strcat(s3, s1) = Happy Happy New Year

 2007 Pearson Education, Inc. All rights reserved.

54

8.7 Comparison Functions of the String-
Handling Library
Comparing strings

– Computer compares numeric ASCII codes of characters in
string

– Appendix D has a list of character codes

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

55

Fig. 8.20 | String-comparison functions of the string-handling library.

 Function prototype Function description

 int strcmp(const char *s1, const char *s2);
 Compares the string s1 with the string s2. The function returns

0, less than 0 or greater than 0 if s1 is equal to, less than or
greater than s2, respectively.

 int strncmp(const char *s1, const char *s2, size_t n);

 Compares up to n characters of the string s1 with the string s2.
The function returns 0, less than 0 or greater than 0 if s1 is
equal to, less than or greater than s2, respectively.

http://www.uml.org/

		
Function prototype

		Function description

		
int strcmp(const char *s1, const char *s2);

		

		Compares the string s1 with the string s2. The function returns 0, less than 0 or greater than 0 if s1 is equal to, less than or greater than s2, respectively.

		
int strncmp(const char *s1, const char *s2, size_t n);

		

		Compares up to n characters of the string s1 with the string s2. The function returns 0, less than 0 or greater than 0 if s1 is
equal to, less than or greater than s2, respec​tively.

 2007 Pearson Education,
Inc. All rights reserved.

56 1 /* Fig. 8.21: fig08_21.c

 2 Using strcmp and strncmp */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 const char *s1 = "Happy New Year"; /* initialize char pointer */

 9 const char *s2 = "Happy New Year"; /* initialize char pointer */

10 const char *s3 = "Happy Holidays"; /* initialize char pointer */
11
12 printf("%s%s\n%s%s\n%s%s\n\n%s%2d\n%s%2d\n%s%2d\n\n",
13 "s1 = ", s1, "s2 = ", s2, "s3 = ", s3,
14 "strcmp(s1, s2) = ", strcmp(s1, s2),
15 "strcmp(s1, s3) = ", strcmp(s1, s3),
16 "strcmp(s3, s1) = ", strcmp(s3, s1));
17

Outline

fig08_21.c

(1 of 2)

strcmp compares
string s1 to string s2

http://www.uml.org/

		
1
/* Fig. 8.21: fig08_21.c

		
2
 Using strcmp and strncmp */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 const char *s1 = "Happy New Year"; /* initialize char pointer */

		
9
 const char *s2 = "Happy New Year"; /* initialize char pointer */

		
10
 const char *s3 = "Happy Holidays"; /* initialize char pointer */

		
11

		
12
 printf("%s%s\n%s%s\n%s%s\n\n%s%2d\n%s%2d\n%s%2d\n\n",

		
13
 "s1 = ", s1, "s2 = ", s2, "s3 = ", s3,

		
14
 "strcmp(s1, s2) = ", strcmp(s1, s2),

		
15
 "strcmp(s1, s3) = ", strcmp(s1, s3),

		
16
 "strcmp(s3, s1) = ", strcmp(s3, s1));

		
17

 2007 Pearson Education,
Inc. All rights reserved.

5718 printf("%s%2d\n%s%2d\n%s%2d\n",
19 "strncmp(s1, s3, 6) = ", strncmp(s1, s3, 6),
20 "strncmp(s1, s3, 7) = ", strncmp(s1, s3, 7),
21 "strncmp(s3, s1, 7) = ", strncmp(s3, s1, 7));
22
23 return 0; /* indicates successful termination */
24
25 } /* end main */

s1 = Happy New Year
s2 = Happy New Year
s3 = Happy Holidays

strcmp(s1, s2) = 0
strcmp(s1, s3) = 1
strcmp(s3, s1) = -1

strncmp(s1, s3, 6) = 0
strncmp(s1, s3, 7) = 1
strncmp(s3, s1, 7) = -1

Outline

fig08_21.c

(2 of 2)
strncmp compares the first 6

characters of string s1 to the first
6 characters of string s3

http://www.uml.org/

		
18
 printf("%s%2d\n%s%2d\n%s%2d\n",

		
19
 "strncmp(s1, s3, 6) = ", strncmp(s1, s3, 6),

		
20
 "strncmp(s1, s3, 7) = ", strncmp(s1, s3, 7),

		
21
 "strncmp(s3, s1, 7) = ", strncmp(s3, s1, 7));

		
22

		
23
 return 0; /* indicates successful termination */

		
24

		
25
} /* end main */

		s1 = Happy New Year

s2 = Happy New Year

s3 = Happy Holidays

strcmp(s1, s2) = 0

strcmp(s1, s3) = 1

strcmp(s3, s1) = -1

		

		strncmp(s1, s3, 6) = 0

strncmp(s1, s3, 7) = 1

strncmp(s3, s1, 7) = -1

 2007 Pearson Education, Inc. All rights reserved.

58

Common Programming Error 8.7

Assuming that strcmp and strncmp return 1
when their arguments are equal is a logic error.
Both functions return 0 (strangely, the
equivalent of C's false value) for equality.
Therefore, when testing two strings for equality,
the result of function strcmp or strncmp
should be compared with 0 to determine if the
strings are equal.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

59

Portability Tip 8.3

The internal numeric codes used to
represent characters may be different
on different computers.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

60

 Function prototype Function description

 char *strchr(const char *s, int c);
 Locates the first occurrence of character c in string s. If c is found, a

pointer to c in s is returned. Otherwise, a NULL pointer is returned.

 size_t strcspn(const char *s1, const char *s2);

 Determines and returns the length of the initial segment of string s1
consisting of characters not contained in string s2.

 size_t strspn(const char *s1, const char *s2);

 Determines and returns the length of the initial segment of string s1
consisting only of characters contained in string s2.

 char *strpbrk(const char *s1, const char *s2);

 Locates the first occurrence in string s1 of any character in string
s2. If a character from string s2 is found, a pointer to the character
in string s1 is returned. Otherwise, a NULL pointer is returned.

Fig. 8.22 | String-manipulation functions of the string-handling library. (Part 1 of 2.)

http://www.uml.org/

		
Function prototype

		Function description

		
char *strchr(const char *s, int c);

		

		Locates the first occurrence of character c in string s. If c is found, a pointer to c in s is returned. Otherwise, a NULL pointer is returned.

		
size_t strcspn(const char *s1, const char *s2);

		

		Determines and returns the length of the initial segment of string s1 consisting of characters not contained in string s2.

		
size_t strspn(const char *s1, const char *s2);

		

		Determines and returns the length of the initial segment of string s1 consisting only of characters contained in string s2.

		
char *strpbrk(const char *s1, const char *s2);

		

		Locates the first occurrence in string s1 of any character in string s2. If a character from string s2 is found, a pointer to the character in string s1 is returned. Other​wise, a NULL pointer is returned.

 2007 Pearson Education, Inc. All rights reserved.

61

Fig. 8.22 | String-manipulation functions of the string-handling library. (Part 2 of 2.)

 Function prototype Function description

 char *strrchr(const char *s, int c);

 Locates the last occurrence of c in string s. If c is found, a pointer to
c in string s is returned. Otherwise, a NULL pointer is returned.

 char *strstr(const char *s1, const char *s2);

 Locates the first occurrence in string s1 of string s2. If the string is
found, a pointer to the string in s1 is returned. Otherwise, a NULL
pointer is returned.

 char *strtok(char *s1, const char *s2);

 A sequence of calls to strtok breaks string s1 into “tokens”—
logical pieces such as words in a line of text—separated by characters
contained in string s2. The first call contains s1 as the first
argument, and subsequent calls to continue tokenizing the same string
contain NULL as the first argument. A pointer to the current token is
returned by each call. If there are no more tokens when the function
is called, NULL is returned.

http://www.uml.org/

		
Function prototype

		Function description

		
char *strrchr(const char *s, int c);

		

		Locates the last occurrence of c in string s. If c is found, a pointer to c in string s is returned. Otherwise, a NULL pointer is returned.

		
char *strstr(const char *s1, const char *s2);

		

		Locates the first occurrence in string s1 of string s2. If the string is found, a pointer to the string in s1 is re​turned. Otherwise, a NULL pointer is returned.

		
char *strtok(char *s1, const char *s2);

		

		A sequence of calls to strtok breaks string s1 into “tokens”—logical pieces such as words in a line of text—separated by characters contained in string s2. The first call contains s1 as the first argument, and subsequent calls to continue tokenizing the same string contain NULL as the first argument. A pointer to the current token is returned by each call. If there are no more tokens when the function is called, NULL is returned.

 2007 Pearson Education,
Inc. All rights reserved.

62 1 /* Fig. 8.23: fig08_23.c

 2 Using strchr */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 const char *string = "This is a test"; /* initialize char pointer */

 9 char character1 = 'a'; /* initialize character1 */

10 char character2 = 'z'; /* initialize character2 */
11
12 /* if character1 was found in string */
13 if (strchr(string, character1) != NULL) {
14 printf("\'%c\' was found in \"%s\".\n",
15 character1, string);
16 } /* end if */
17 else { /* if character1 was not found */
18 printf("\'%c\' was not found in \"%s\".\n",
19 character1, string);
20 } /* end else */

Outline

fig08_23.c

(1 of 2)

strchr searches for the first instance
of character1 in string

http://www.uml.org/

		
1
/* Fig. 8.23: fig08_23.c

		
2
 Using strchr */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 const char *string = "This is a test"; /* initialize char pointer */

		
9
 char character1 = 'a'; /* initialize character1 */

		
10
 char character2 = 'z'; /* initialize character2 */

		
11

		
12
 /* if character1 was found in string */

		
13
 if (strchr(string, character1) != NULL) {

		
14
 printf("\'%c\' was found in \"%s\".\n",

		
15
 character1, string);

		
16
 } /* end if */

		
17
 else { /* if character1 was not found */

		
18
 printf("\'%c\' was not found in \"%s\".\n",

		
19
 character1, string);

		
20
 } /* end else */

 2007 Pearson Education,
Inc. All rights reserved.

6321
22 /* if character2 was found in string */
23 if (strchr(string, character2) != NULL) {
24 printf("\'%c\' was found in \"%s\".\n",
25 character2, string);
26 } /* end if */
27 else { /* if character2 was not found */
28 printf("\'%c\' was not found in \"%s\".\n",
29 character2, string);
30 } /* end else */
31
32 return 0; /* indicates successful termination */
33
34 } /* end main */

'a' was found in "This is a test".
'z' was not found in "This is a test".

Outline

fig08_23.c

(2 of 2)

http://www.uml.org/

		
21

		
22
 /* if character2 was found in string */

		
23
 if (strchr(string, character2) != NULL) {

		
24
 printf("\'%c\' was found in \"%s\".\n",

		
25
 character2, string);

		
26
 } /* end if */

		
27
 else { /* if character2 was not found */

		
28
 printf("\'%c\' was not found in \"%s\".\n",

		
29
 character2, string);

		
30
 } /* end else */

		
31

		
32
 return 0; /* indicates successful termination */

		
33

		
34
} /* end main */

		'a' was found in "This is a test".

'z' was not found in "This is a test".

 2007 Pearson Education,
Inc. All rights reserved.

64 1 /* Fig. 8.24: fig08_24.c

 2 Using strcspn */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 /* initialize two char pointers */

 9 const char *string1 = "The value is 3.14159";

10 const char *string2 = "1234567890";
11
12 printf("%s%s\n%s%s\n\n%s\n%s%u\n",
13 "string1 = ", string1, "string2 = ", string2,
14 "The length of the initial segment of string1",
15 "containing no characters from string2 = ",
16 strcspn(string1, string2));
17
18 return 0; /* indicates successful termination */
19
20 } /* end main */

string1 = The value is 3.14159
string2 = 1234567890

The length of the initial segment of string1
containing no characters from string2 = 13

Outline

fig08_24.c

strcspn returns the length of the initial
segment of string1 that does not
contain any characters in string2

http://www.uml.org/

		
1
/* Fig. 8.24: fig08_24.c

		
2
 Using strcspn */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 /* initialize two char pointers */

		
9
 const char *string1 = "The value is 3.14159";

		
10
 const char *string2 = "1234567890";

		
11

		
12
 printf("%s%s\n%s%s\n\n%s\n%s%u\n",

		
13
 "string1 = ", string1, "string2 = ", string2,

		
14
 "The length of the initial segment of string1",

		
15
 "containing no characters from string2 = ",

		
16
 strcspn(string1, string2));

		
17

		
18
 return 0; /* indicates successful termination */

		
19

		
20
} /* end main */

		string1 = The value is 3.14159

string2 = 1234567890

The length of the initial segment of string1

containing no characters from string2 = 13

 2007 Pearson Education,
Inc. All rights reserved.

65 1 /* Fig. 8.25: fig08_25.c

 2 Using strpbrk */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 const char *string1 = "This is a test"; /* initialize char pointer */

 9 const char *string2 = "beware"; /* initialize char pointer */

10
11 printf("%s\"%s\"\n'%c'%s\n\"%s\"\n",
12 "Of the characters in ", string2,
13 *strpbrk(string1, string2),
14 " appears earliest in ", string1);
15
16 return 0; /* indicates successful termination */
17
18 } /* end main */

Of the characters in "beware"
'a' appears earliest in
"This is a test"

Outline

fig08_25.c

strpbrk returns a pointer to the
first appearance in string1 of
any character from string2

http://www.uml.org/

		
1
/* Fig. 8.25: fig08_25.c

		
2
 Using strpbrk */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 const char *string1 = "This is a test"; /* initialize char pointer */

		
9
 const char *string2 = "beware"; /* initialize char pointer */

		
10

		
11
 printf("%s\"%s\"\n'%c'%s\n\"%s\"\n",

		
12
 "Of the characters in ", string2,

		
13
 *strpbrk(string1, string2),

		
14
 " appears earliest in ", string1);

		
15

		
16
 return 0; /* indicates successful termination */

		
17

		
18
} /* end main */

		Of the characters in "beware"

'a' appears earliest in

"This is a test"

 2007 Pearson Education,
Inc. All rights reserved.

66 1 /* Fig. 8.26: fig08_26.c

 2 Using strrchr */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 /* initialize char pointer */

 9 const char *string1 = "A zoo has many animals including zebras";

10
11 int c = 'z'; /* character to search for */
12
13 printf("%s\n%s'%c'%s\"%s\"\n",
14 "The remainder of string1 beginning with the",
15 "last occurrence of character ", c,
16 " is: ", strrchr(string1, c));
17
18 return 0; /* indicates successful termination */
19
20 } /* end main */

The remainder of string1 beginning with the
last occurrence of character 'z' is: "zebras"

Outline

fig08_26.c

strrchr returns the remainder of
string1 following the last
occurrence of the character c

http://www.uml.org/

		
1
/* Fig. 8.26: fig08_26.c

		
2
 Using strrchr */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 /* initialize char pointer */

		
9
 const char *string1 = "A zoo has many animals including zebras";

		
10

		
11
 int c = 'z'; /* character to search for */

		
12

		
13
 printf("%s\n%s'%c'%s\"%s\"\n",

		
14
 "The remainder of string1 beginning with the",

		
15
 "last occurrence of character ", c,

		
16
 " is: ", strrchr(string1, c));

		
17

		
18
 return 0; /* indicates successful termination */

		
19

		
20
} /* end main */

		The remainder of string1 beginning with the

last occurrence of character 'z' is: "zebras"

 2007 Pearson Education,
Inc. All rights reserved.

67 1 /* Fig. 8.27: fig08_27.c

 2 Using strspn */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 /* initialize two char pointers */

 9 const char *string1 = "The value is 3.14159";

10 const char *string2 = "aehi lsTuv";
11
12 printf("%s%s\n%s%s\n\n%s\n%s%u\n",
13 "string1 = ", string1, "string2 = ", string2,
14 "The length of the initial segment of string1",
15 "containing only characters from string2 = ",
16 strspn(string1, string2));
17
18 return 0; /* indicates successful termination */
19
20 } /* end main */

string1 = The value is 3.14159
string2 = aehi lsTuv

The length of the initial segment of string1
containing only characters from string2 = 13

Outline

fig08_27.c

strspn returns the length of the initial
segment of string1 that contains
only characters from string2

http://www.uml.org/

		
1
/* Fig. 8.27: fig08_27.c

		
2
 Using strspn */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 /* initialize two char pointers */

		
9
 const char *string1 = "The value is 3.14159";

		
10
 const char *string2 = "aehi lsTuv";

		
11

		
12
 printf("%s%s\n%s%s\n\n%s\n%s%u\n",

		
13
 "string1 = ", string1, "string2 = ", string2,

		
14
 "The length of the initial segment of string1",

		
15
 "containing only characters from string2 = ",

		
16
 strspn(string1, string2));

		
17

		
18
 return 0; /* indicates successful termination */

		
19

		
20
} /* end main */

		string1 = The value is 3.14159

string2 = aehi lsTuv

The length of the initial segment of string1

containing only characters from string2 = 13

 2007 Pearson Education,
Inc. All rights reserved.

68 1 /* Fig. 8.28: fig08_28.c

 2 Using strstr */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 const char *string1 = "abcdefabcdef"; /* string to search */

 9 const char *string2 = "def"; /* string to search for */

10
11 printf("%s%s\n%s%s\n\n%s\n%s%s\n",
12 "string1 = ", string1, "string2 = ", string2,
13 "The remainder of string1 beginning with the",
14 "first occurrence of string2 is: ",
15 strstr(string1, string2));
16
17 return 0; /* indicates successful termination */
18
19 } /* end main */

string1 = abcdefabcdef
string2 = def

The remainder of string1 beginning with the
first occurrence of string2 is: defabcdef

Outline

fig08_28.c

strstr returns the remainder of string1
following the last occurrence of string2

http://www.uml.org/

		
1
/* Fig. 8.28: fig08_28.c

		
2
 Using strstr */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 const char *string1 = "abcdefabcdef"; /* string to search */

		
9
 const char *string2 = "def"; /* string to search for */

		
10

		
11
 printf("%s%s\n%s%s\n\n%s\n%s%s\n",

		
12
 "string1 = ", string1, "string2 = ", string2,

		
13
 "The remainder of string1 beginning with the",

		
14
 "first occurrence of string2 is: ",

		
15
 strstr(string1, string2));

		
16

		
17
 return 0; /* indicates successful termination */

		
18

		
19
} /* end main */

		string1 = abcdefabcdef

string2 = def

The remainder of string1 beginning with the

first occurrence of string2 is: defabcdef

 2007 Pearson Education,
Inc. All rights reserved.

69 1 /* Fig. 8.29: fig08_29.c

 2 Using strtok */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 /* initialize array string */

 9 char string[] = "This is a sentence with 7 tokens";

10 char *tokenPtr; /* create char pointer */
11
12 printf("%s\n%s\n\n%s\n",
13 "The string to be tokenized is:", string,
14 "The tokens are:");
15
16 tokenPtr = strtok(string, " "); /* begin tokenizing sentence */
17
18 /* continue tokenizing sentence until tokenPtr becomes NULL */
19 while (tokenPtr != NULL) {
20 printf("%s\n", tokenPtr);
21 tokenPtr = strtok(NULL, " "); /* get next token */
22 } /* end while */

Outline

fig08_29.c

(1 of 2)

strtok “tokenizes” string by
breaking it into tokens at each space

Calling strtok again and passing it NULL
continues the tokenizing of the previous string

http://www.uml.org/

		
1
/* Fig. 8.29: fig08_29.c

		
2
 Using strtok */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 /* initialize array string */

		
9
 char string[] = "This is a sentence with 7 tokens";

		
10
 char *tokenPtr; /* create char pointer */

		
11

		
12
 printf("%s\n%s\n\n%s\n",

		
13
 "The string to be tokenized is:", string,

		
14
 "The tokens are:");

		
15

		
16
 tokenPtr = strtok(string, " "); /* begin tokenizing sentence */

		
17

		
18
 /* continue tokenizing sentence until tokenPtr becomes NULL */

		
19
 while (tokenPtr != NULL) {

		
20
 printf("%s\n", tokenPtr);

		
21
 tokenPtr = strtok(NULL, " "); /* get next token */

		
22
 } /* end while */

 2007 Pearson Education,
Inc. All rights reserved.

7023
24 return 0; /* indicates successful termination */
25
26 } /* end main */

The string to be tokenized is:
This is a sentence with 7 tokens

The tokens are:
This
is
a
sentence
with
7
tokens

Outline

fig08_29.c

(2 of 2)

http://www.uml.org/

		
23

		
24
 return 0; /* indicates successful termination */

		
25

		
26
} /* end main */

		The string to be tokenized is:

This is a sentence with 7 tokens

The tokens are:

This

is

a

sentence

with

7

tokens

 2007 Pearson Education, Inc. All rights reserved.

71

8.9 Memory Functions of the String-
Handling Library
Memory Functions

– In <stdlib.h>
– Manipulate, compare, and search blocks of memory
– Can manipulate any block of data

 Pointer parameters are void *
– Any pointer can be assigned to void *, and vice versa
– void * cannot be dereferenced

- Each function receives a size argument specifying the number
of bytes (characters) to process

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

72

Fig. 8.30 | Memory functions of the string-handling library.

 Function prototype Function description

 void *memcpy(void *s1, const void *s2, size_t n);
 Copies n characters from the object pointed to by s2 into the

object pointed to by s1. A pointer to the resulting object is
returned.

 void *memmove(void *s1, const void *s2, size_t n);

 Copies n characters from the object pointed to by s2 into the
object pointed to by s1. The copy is performed as if
the characters were first copied from the object pointed to by s2
into a temporary array and then from the temporary array into
the object pointed to by s1. A pointer to the resulting object is
returned.

 int memcmp(const void *s1, const void *s2, size_t n);

 Compares the first n characters of the objects pointed to
by s1 and s2. The function returns 0, less than 0 or
greater than 0 if s1 is equal to, less than or greater than s2.

 void *memchr(const void *s, int c, size_t n);

 Locates the first occurrence of c (converted to unsigned
char) in the first n characters of the object pointed to by s. If
c is found, a pointer to c in the object is returned. Otherwise,
NULL is returned.

 void *memset(void *s, int c, size_t n);

 Copies c (converted to unsigned char) into the first n
characters of the object pointed to by s. A pointer to the result is
returned.

http://www.uml.org/

		
Function prototype

		Function description

		
void *memcpy(void *s1, const void *s2, size_t n);

		

		Copies n characters from the object pointed to by s2 into the object pointed to by s1. A pointer to the resulting object is returned.

		
void *memmove(void *s1, const void *s2, size_t n);

		

		Copies n characters from the object pointed to by s2 into the object pointed to by s1. The copy is performed as if
the characters were first copied from the object pointed to by s2 into a temporary array and then from the temporary array into the object pointed to by s1. A pointer to the resulting object is returned.

		
int memcmp(const void *s1, const void *s2, size_t n);

		

		Compares the first n characters of the objects pointed to
by s1 and s2. The function returns 0, less than 0 or
greater than 0 if s1 is equal to, less than or greater than s2.

		
void *memchr(const void *s, int c, size_t n);

		

		Locates the first occurrence of c (converted to un​signed char) in the first n characters of the object pointed to by s. If c is found, a pointer to c in the object is returned. Otherwise, NULL is returned.

		
void *memset(void *s, int c, size_t n);

		

		Copies c (converted to unsigned char) into the first n characters of the object pointed to by s. A pointer to the result is returned.

 2007 Pearson Education, Inc. All rights reserved.

73

Common Programming Error 8.8

String-manipulation functions other than
memmove that copy characters have
undefined results when copying takes place
between parts of the same string.

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

74 1 /* Fig. 8.31: fig08_31.c

 2 Using memcpy */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 char s1[17]; /* create char array s1 */

 9 char s2[] = "Copy this string"; /* initialize char array s2 */

10
11 memcpy(s1, s2, 17);
12 printf("%s\n%s\"%s\"\n",
13 "After s2 is copied into s1 with memcpy,",
14 "s1 contains ", s1);
15
16 return 0; /* indicates successful termination */
17
18 } /* end main */

After s2 is copied into s1 with memcpy,
s1 contains "Copy this string"

Outline

fig08_31.c

memcpy copies the first 17 characters
from object s2 into object s1

http://www.uml.org/

		
1
/* Fig. 8.31: fig08_31.c

		
2
 Using memcpy */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 char s1[17]; /* create char array s1 */

		
9
 char s2[] = "Copy this string"; /* initialize char array s2 */

		
10

		
11
 memcpy(s1, s2, 17);

		
12
 printf("%s\n%s\"%s\"\n",

		
13
 "After s2 is copied into s1 with memcpy,",

		
14
 "s1 contains ", s1);

		
15

		
16
 return 0; /* indicates successful termination */

		
17

		
18
} /* end main */

		After s2 is copied into s1 with memcpy,

s1 contains "Copy this string"

 2007 Pearson Education,
Inc. All rights reserved.

75 1 /* Fig. 8.32: fig08_32.c

 2 Using memmove */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 char x[] = "Home Sweet Home"; /* initialize char array x */

 9
10 printf("%s%s\n", "The string in array x before memmove is: ", x);
11 printf("%s%s\n", "The string in array x after memmove is: ",
12 memmove(x, &x[5], 10));
13
14 return 0; /* indicates successful termination */
15
16 } /* end main */

The string in array x before memmove is: Home Sweet Home
The string in array x after memmove is: Sweet Home Home

Outline

fig08_32.c

memmove copies the first 10
characters from x[5] into object
x by means of a temporary array

http://www.uml.org/

		
1
/* Fig. 8.32: fig08_32.c

		
2
 Using memmove */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 char x[] = "Home Sweet Home"; /* initialize char array x */

		
9

		
10
 printf("%s%s\n", "The string in array x before memmove is: ", x);

		
11
 printf("%s%s\n", "The string in array x after memmove is: ",

		
12
 memmove(x, &x[5], 10));

		
13

		
14
 return 0; /* indicates successful termination */

		
15

		
16
} /* end main */

		The string in array x before memmove is: Home Sweet Home

The string in array x after memmove is: Sweet Home Home

 2007 Pearson Education,
Inc. All rights reserved.

76 1 /* Fig. 8.33: fig08_33.c

 2 Using memcmp */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 char s1[] = "ABCDEFG"; /* initialize char array s1 */

 9 char s2[] = "ABCDXYZ"; /* initialize char array s2 */

10
11 printf("%s%s\n%s%s\n\n%s%2d\n%s%2d\n%s%2d\n",
12 "s1 = ", s1, "s2 = ", s2,
13 "memcmp(s1, s2, 4) = ", memcmp(s1, s2, 4),
14 "memcmp(s1, s2, 7) = ", memcmp(s1, s2, 7),
15 "memcmp(s2, s1, 7) = ", memcmp(s2, s1, 7));
16
17 return 0; /* indicate successful termination */
18
19 } /* end main */

s1 = ABCDEFG
s2 = ABCDXYZ

memcmp(s1, s2, 4) = 0
memcmp(s1, s2, 7) = -1
memcmp(s2, s1, 7) = 1

Outline

fig08_33.c

memcmp compares the first 4
characters of objects s1 and s2

http://www.uml.org/

		
1
/* Fig. 8.33: fig08_33.c

		
2
 Using memcmp */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 char s1[] = "ABCDEFG"; /* initialize char array s1 */

		
9
 char s2[] = "ABCDXYZ"; /* initialize char array s2 */

		
10

		
11
 printf("%s%s\n%s%s\n\n%s%2d\n%s%2d\n%s%2d\n",

		
12
 "s1 = ", s1, "s2 = ", s2,

		
13
 "memcmp(s1, s2, 4) = ", memcmp(s1, s2, 4),

		
14
 "memcmp(s1, s2, 7) = ", memcmp(s1, s2, 7),

		
15
 "memcmp(s2, s1, 7) = ", memcmp(s2, s1, 7));

		
16

		
17
 return 0; /* indicate successful termination */

		
18

		
19
} /* end main */

		s1 = ABCDEFG

s2 = ABCDXYZ

memcmp(s1, s2, 4) = 0

memcmp(s1, s2, 7) = -1

memcmp(s2, s1, 7) = 1

 2007 Pearson Education,
Inc. All rights reserved.

77 1 /* Fig. 8.34: fig08_34.c

 2 Using memchr */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 const char *s = "This is a string"; /* initialize char pointer */

 9
10 printf("%s\'%c\'%s\"%s\"\n",
11 "The remainder of s after character ", 'r',
12 " is found is ", memchr(s, 'r', 16));
13
14 return 0; /* indicates successful termination */
15
16 } /* end main */

The remainder of s after character 'r' is found is "ring"

Outline

fig08_34.c

memchr locates the first occurrence
of the character r inside the first
16 characters of object s

http://www.uml.org/

		
1
/* Fig. 8.34: fig08_34.c

		
2
 Using memchr */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 const char *s = "This is a string"; /* initialize char pointer */

		
9

		
10
 printf("%s\'%c\'%s\"%s\"\n",

		
11
 "The remainder of s after character ", 'r',

		
12
 " is found is ", memchr(s, 'r', 16));

		
13

		
14
 return 0; /* indicates successful termination */

		
15

		
16
} /* end main */

		The remainder of s after character 'r' is found is "ring"

 2007 Pearson Education,
Inc. All rights reserved.

78 1 /* Fig. 8.35: fig08_35.c

 2 Using memset */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 char string1[15] = "BBBBBBBBBBBBBB"; /* initialize string1 */

 9
10 printf("string1 = %s\n", string1);
11 printf("string1 after memset = %s\n", memset(string1, 'b', 7));
12
13 return 0; /* indicates successful termination */
14
15 } /* end main */

string1 = BBBBBBBBBBBBBB
string1 after memset = bbbbbbbBBBBBBB

Outline

fig08_35.c

memset copies the character b into the
first 7 characters of object string1

http://www.uml.org/

		
1
/* Fig. 8.35: fig08_35.c

		
2
 Using memset */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 char string1[15] = "BBBBBBBBBBBBBB"; /* initialize string1 */

		
9

		
10
 printf("string1 = %s\n", string1);

		
11
 printf("string1 after memset = %s\n", memset(string1, 'b', 7));

		
12

		
13
 return 0; /* indicates successful termination */

		
14

		
15
} /* end main */

		string1 = BBBBBBBBBBBBBB

string1 after memset = bbbbbbbBBBBBBB

 2007 Pearson Education, Inc. All rights reserved.

79

 Function prototype Function description

 char *strerror(int errornum);
 Maps errornum into a full text string in a locale-specific

manner (e.g. the message may appear in different languages
based on its location). A pointer to the string is returned.

 size_t strlen(const char *s);

 Determines the length of string s. The number of characters
preceding the terminating null character is returned.

Fig. 8.36 | Other functions of the string-handling library.

http://www.uml.org/

		
Function prototype

		Function description

		
char *strerror(int errornum);

		

		Maps errornum into a full text string in a locale-specific manner (e.g. the message may appear in different languages based on its location). A pointer to the string is returned.

		
size_t strlen(const char *s);

		

		Determines the length of string s. The number of characters preceding the terminating null char​acter is returned.

 2007 Pearson Education,
Inc. All rights reserved.

80 1 /* Fig. 8.37: fig08_37.c

 2 Using strerror */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 printf("%s\n", strerror(2));

 9
10 return 0; /* indicates successful termination */
11
12 } /* end main */

No such file or directory

Outline

fig08_37.c

strerror returns an error message
based on the number passed to it

http://www.uml.org/

		
1
/* Fig. 8.37: fig08_37.c

		
2
 Using strerror */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 printf("%s\n", strerror(2));

		
9

		
10
 return 0; /* indicates successful termination */

		
11

		
12
} /* end main */

		No such file or directory

 2007 Pearson Education, Inc. All rights reserved.

81

Portability Tip 8.4

The message generated by strerror is
system dependent.

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

82 1 /* Fig. 8.38: fig08_38.c

 2 Using strlen */

 3 #include <stdio.h>

 4 #include <string.h>

 5
 6 int main(void)

 7 {

 8 /* initialize 3 char pointers */

 9 const char *string1 = "abcdefghijklmnopqrstuvwxyz";

10 const char *string2 = "four";
11 const char *string3 = "Boston";
12
13 printf("%s\"%s\"%s%lu\n%s\"%s\"%s%lu\n%s\"%s\"%s%lu\n",
14 "The length of ", string1, " is ",
15 (unsigned long) strlen(string1),
16 "The length of ", string2, " is ",
17 (unsigned long) strlen(string2),
18 "The length of ", string3, " is ",
19 (unsigned long) strlen(string3));
20
21 return 0; /* indicates successful termination */
22
23 } /* end main */

The length of "abcdefghijklmnopqrstuvwxyz" is 26
The length of "four" is 4
The length of "Boston" is 6

Outline

fig08_38.c

strlen returns the length of string1

http://www.uml.org/

		
1
/* Fig. 8.38: fig08_38.c

		
2
 Using strlen */

		
3
#include <stdio.h>

		
4
#include <string.h>

		
5

		
6
int main(void)

		
7
{

		
8
 /* initialize 3 char pointers */

		
9
 const char *string1 = "abcdefghijklmnopqrstuvwxyz";

		
10
 const char *string2 = "four";

		
11
 const char *string3 = "Boston";

		
12

		
13
 printf("%s\"%s\"%s%lu\n%s\"%s\"%s%lu\n%s\"%s\"%s%lu\n",

		
14
 "The length of ", string1, " is ",

		
15
 (unsigned long) strlen(string1),

		
16
 "The length of ", string2, " is ",

		
17
 (unsigned long) strlen(string2),

		
18
 "The length of ", string3, " is ",

		
19
 (unsigned long) strlen(string3));

		
20

		
21
 return 0; /* indicates successful termination */

		
22

		
23
} /* end main */

		The length of "abcdefghijklmnopqrstuvwxyz" is 26

The length of "four" is 4

The length of "Boston" is 6

	8
	Slide Number 2
	Slide Number 3
	OBJECTIVES
	Slide Number 5
	8.1 Introduction
	8.2 Fundamentals of Strings and Characters
	Portability Tip 8.1
	Common Programming Error 8.1
	Common Programming Error 8.2
	Error-Prevention Tip 8.1
	8.2 Fundamentals of Strings and Characters
	Common Programming Error 8.3
	Common Programming Error 8.4
	Common Programming Error 8.5
	8.3 Character Handling Library
	Slide Number 17
	Slide Number 18
	Error-Prevention Tip 8.2
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	8.4 String-Conversion Functions
	Slide Number 29
	Error-Prevention Tip 8.3
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	8.5 Standard Input/Output Library Functions
	Slide Number 38
	Error-Prevention Tip 8.4
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	8.6 String Manipulation Functions of the String Handling Library
	Slide Number 47
	Portability Tip 8.2
	Error-Prevention Tip 8.5
	Common Programming Error 8.6
	Slide Number 51
	Slide Number 52
	Slide Number 53
	8.7 Comparison Functions of the String-Handling Library
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Common Programming Error 8.7
	Portability Tip 8.3
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	8.9 Memory Functions of the String-Handling Library
	Slide Number 72
	Common Programming Error 8.8
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Portability Tip 8.4
	Slide Number 82

