
 2007 Pearson Education, Inc. All rights reserved.

1

14
Other C Topics

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

2

We’ll use a signal I have tried and found
far-reaching and easy to yell. Waa-hoo!

—Zane Grey

It is quite a three-pipe problem.
—Sir Arthur Conan Doyle

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

3

OBJECTIVES
In this chapter you will learn:
 To redirect keyboard input to come from a file.
 To redirect screen output to be placed in a file.
 To write functions that use variable-length argument lists.
 To process command-line arguments.
 To assign specific types to numeric constants.
 To use temporary files.
 To process external asynchronous events in a program.
 To allocate memory dynamically for arrays.
 To change the size of memory that was dynamically

allocated previously.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

4

14.1 Introduction
14.2 Redirecting Input/Output on Linux/UNIX and

Windows Systems
14.3 Variable-Length Argument Lists
14.4 Using Command-Line Arguments
14.5 Notes on Compiling Multiple-Source-File

Programs
14.6 Program Termination with exit and at exit

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

5

14.7 volatile Type Qualifier
14.8 Suffixes for Integer and Floating-Point

Constants
14.9 More on Files
14.10 Signal Handling
14.11 Dynamic Memory Allocation: Functions calloc

and realloc
14.12 Unconditional Branching with goto

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

6

14.1 Introduction

 Several advanced topics in this chapter
Operating system specific

– Usually UNIX or DOS

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

7

14.2 Redirecting Input/Output on UNIX
and DOS Systems
 Standard I/O - keyboard and screen

– Redirect input and output
 Redirect symbol(<)

– Operating system feature, not a C feature
– UNIX and DOS
– $ or % represents command line
– Example:

$ sum < input

– Rather than inputting values by hand, read them from a file
 Pipe command(|)

– Output of one program becomes input of another
$ random | sum

– Output of random goes to sum

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

8

14.2 Redirecting Input/Output on UNIX
and DOS Systems
Redirect output (>)

– Determines where output of a program goes
– Example:

$ random > out

- Output goes into out (erases previous contents)

Append output (>>)
– Add output to end of file (preserve previous contents)
– Example:

$ random >> out

- Output is added onto the end of out

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

9

14.3 Variable-Length Argument Lists

 Functions with unspecified number of arguments
– Load <stdarg.h>
– Use ellipsis(...) at end of parameter list
– Need at least one defined parameter
– Example:

double myfunction (int i, ...);

– The ellipsis is only used in the prototype of a function with
a variable length argument list

– printf is an example of a function that can take multiple
arguments

– The prototype of printf is defined as
int printf(const char* format, ...);

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

10

Fig. 14.1 | stdarg.h variable-length argument list type and macros.

 Identifier Explanation

 va_list A type suitable for holding information needed by macros va_start,
va_arg and va_end. To access the arguments in a variable-length
argument list, an object of type va_list must be defined.

 va_start A macro that is invoked before the arguments of a variable-length
argument list can be accessed. The macro initializes the object declared
with va_list for use by the va_arg and va_end macros.

 va_arg A macro that expands to an expression of the value and type of the next
argument in the variable-length argument list. Each invocation of
va_arg modifies the object declared with va_list so that the object
points to the next argument in the list.

 va_end A macro that facilitates a normal return from a function whose variable-
length argument list was referred to by the va_start macro.

http://www.uml.org/

		
Identifier

		Explanation

		
va_list

		A type suitable for holding information needed by macros va_start,
va_arg and va_end. To access the arguments in a variable-length argument list, an object of type va_list must be defined.

		
va_start

		A macro that is invoked before the arguments of a variable-length argument list can be accessed. The macro initializes the object de​clared with va_list for use by the va_arg and va_end macros.

		
va_arg

		A macro that expands to an expression of the value and type of the next argument in the variable-length argument list. Each invocation of va_arg modifies the object declared with va_list so that the object points to the next argument in the list.

		
va_end

		A macro that facilitates a normal return from a function whose variable-length argument list was referred to by the va_start macro.

 2007 Pearson Education,
Inc. All rights reserved.

11 1 /* Fig. 14.2: fig14_02.c

 2 Using variable-length argument lists */

 3 #include <stdio.h>

 4 #include <stdarg.h>

 5
 6 double average(int i, ...); /* prototype */

 7
 8 int main(void)

 9 {

10 double w = 37.5;
11 double x = 22.5;
12 double y = 1.7;
13 double z = 10.2;
14
15 printf("%s%.1f\n%s%.1f\n%s%.1f\n%s%.1f\n\n",
16 "w = ", w, "x = ", x, "y = ", y, "z = ", z);
17 printf("%s%.3f\n%s%.3f\n%s%.3f\n",
18 "The average of w and x is ", average(2, w, x),
19 "The average of w, x, and y is ", average(3, w, x, y),
20 "The average of w, x, y, and z is ",
21 average(4, w, x, y, z));
22
23 return 0; /* indicates successful termination */
24
25 } /* end main */
26

Outline

fig14_02.c

(1 of 2)Function average takes an integer i and an
unspecified number of additional arguments

http://www.uml.org/

		
1
/* Fig. 14.2: fig14_02.c

		
2
 Using variable-length argument lists */

		
3
#include <stdio.h>

		
4
#include <stdarg.h>

		
5

		
6
double average(int i, ...); /* prototype */

		
7

		
8
int main(void)

		
9
{

		
10
 double w = 37.5;

		
11
 double x = 22.5;

		
12
 double y = 1.7;

		
13
 double z = 10.2;

		
14

		
15
 printf("%s%.1f\n%s%.1f\n%s%.1f\n%s%.1f\n\n",

		
16
 "w = ", w, "x = ", x, "y = ", y, "z = ", z);

		
17
 printf("%s%.3f\n%s%.3f\n%s%.3f\n",

		
18
 "The average of w and x is ", average(2, w, x),

		
19
 "The average of w, x, and y is ", average(3, w, x, y),

		
20
 "The average of w, x, y, and z is ",

		
21
 average(4, w, x, y, z));

		
22

		
23
 return 0; /* indicates successful termination */

		
24

		
25
} /* end main */

		
26

 2007 Pearson Education,
Inc. All rights reserved.

1227 /* calculate average */
28 double average(int i, ...)
29 {
30 double total = 0; /* initialize total */
31 int j; /* counter for selecting arguments */
32 va_list ap; /* stores information needed by va_start and va_end */
33
34 va_start(ap, i); /* initializes the va_list object */
35
36 /* process variable length argument list */
37 for (j = 1; j <= i; j++) {
38 total += va_arg(ap, double);
39 } /* end for */
40
41 va_end(ap); /* clean up variable-length argument list */
42
43 return total / i; /* calculate average */
44 } /* end function average */

w = 37.5
x = 22.5
y = 1.7
z = 10.2

The average of w and x is 30.000
The average of w, x, and y is 20.567
The average of w, x, y, and z is 17.975

Outline

fig14_02.c

(2 of 2)

va_list variable holds
information for other
variable-argument macros

va_start macro initializes
ap with i elements

va_arg macro retrieves next
element from ap and
converts it to type double

va_end macro allows the
function to facilitate a
normal return to main

http://www.uml.org/

		
27
/* calculate average */

		
28
double average(int i, ...)

		
29
{

		
30
 double total = 0; /* initialize total */

		
31
 int j; /* counter for selecting arguments */

		
32
 va_list ap; /* stores information needed by va_start and va_end */

		
33

		
34
 va_start(ap, i); /* initializes the va_list object */

		
35

		
36
 /* process variable length argument list */

		
37
 for (j = 1; j <= i; j++) {

		
38
 total += va_arg(ap, double);

		
39
 } /* end for */

		
40

		
41
 va_end(ap); /* clean up variable-length argument list */

		
42

		
43
 return total / i; /* calculate average */

		
44
} /* end function average */

		w = 37.5

x = 22.5

y = 1.7

z = 10.2

The average of w and x is 30.000

The average of w, x, and y is 20.567

The average of w, x, y, and z is 17.975

 2007 Pearson Education, Inc. All rights reserved.

13

Common Programming Error 14.1

Placing an ellipsis in the middle of a function
parameter list is a syntax error. An ellipsis
may only be placed at the end of the
parameter list.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

14

14.4 Using Command-Line Arguments

 Pass arguments to main on DOS or UNIX
– Define main as

int main(int argc, char *argv[])

– int argc

- Number of arguments passed
– char *argv[]

- Array of strings
- Has names of arguments in order

argv[0] is first argument
– Example: $ mycopy input output

- argc: 3

- argv[0]: “mycopy"

- argv[1]: "input"

- argv[2]: "output"

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

15 1 /* Fig. 14.3: fig14_03.c

 2 Using command-line arguments */

 3 #include <stdio.h>

 4
 5 int main(int argc, char *argv[])

 6 {

 7 FILE *inFilePtr; /* input file pointer */

 8 FILE *outFilePtr; /* output file pointer */

 9 int c; /* define c to hold characters input by user */

10
11 /* check number of command-line arguments */
12 if (argc != 3) {
13 printf("Usage: mycopy infile outfile\n");
14 } /* end if */
15 else {
16
17 /* if input file can be opened */
18 if ((inFilePtr = fopen(argv[1], "r")) != NULL) {
19
20 /* if output file can be opened */
21 if ((outFilePtr = fopen(argv[2], "w")) != NULL) {
22
23 /* read and output characters */
24 while ((c = fgetc(inFilePtr)) != EOF) {
25 fputc(c, outFilePtr);
26 } /* end while */

Outline

fig14_03.c

(1 of 2)

Notice that main takes
arguments argc and argv

The program is passed three arguments: the name
of the program, the name of the file to be read
from, and the name of the file to write to.

The program attempts to open the file
specified by argv[1] for reading...

...then attempts to open the file specified
by argv[2] for writing.

The program takes each character from
inFilePtr and writes them to outFilePtr

http://www.uml.org/

		
1
/* Fig. 14.3: fig14_03.c

		
2
 Using command-line arguments */

		
3
#include <stdio.h>

		
4

		
5
int main(int argc, char *argv[])

		
6
{

		
7
 FILE *inFilePtr; /* input file pointer */

		
8
 FILE *outFilePtr; /* output file pointer */

		
9
 int c; /* define c to hold characters input by user */

		
10

		
11
 /* check number of command-line arguments */

		
12
 if (argc != 3) {

		
13
 printf("Usage: mycopy infile outfile\n");

		
14
 } /* end if */

		
15
 else {

		
16

		
17
 /* if input file can be opened */

		
18
 if ((inFilePtr = fopen(argv[1], "r")) != NULL) {

		
19

		
20
 /* if output file can be opened */

		
21
 if ((outFilePtr = fopen(argv[2], "w")) != NULL) {

		
22

		
23
 /* read and output characters */

		
24
 while ((c = fgetc(inFilePtr)) != EOF) {

		
25
 fputc(c, outFilePtr);

		
26
 } /* end while */

 2007 Pearson Education,
Inc. All rights reserved.

1627
28 } /* end if */
29 else { /* output file could not be opened */
30 printf("File \"%s\" could not be opened\n", argv[2]);
31 } /* end else */
32
33 } /* end if */
34 else { /* input file could not be opened */
35 printf("File \"%s\" could not be opened\n", argv[1]);
36 } /* end else */
37
38 } /* end else */
39
40 return 0; /* indicates successful termination */
41
42 } /* end main */

Outline

fig14_03.c

(2 of 2)

http://www.uml.org/

		
27

		
28
 } /* end if */

		
29
 else { /* output file could not be opened */

		
30
 printf("File \"%s\" could not be opened\n", argv[2]);

		
31
 } /* end else */

		
32

		
33
 } /* end if */

		
34
 else { /* input file could not be opened */

		
35
 printf("File \"%s\" could not be opened\n", argv[1]);

		
36
 } /* end else */

		
37

		
38
 } /* end else */

		
39

		
40
 return 0; /* indicates successful termination */

		
41

		
42
} /* end main */

 2007 Pearson Education, Inc. All rights reserved.

17

14.5 Notes on Compiling Multiple Source-
File Programs
 Programs with multiple source files

– Function definition must be in one file (cannot be split up)
– Global variables accessible to functions in same file

- Global variables must be defined in every file in which they are used
– Example:

- If integer flag is defined in one file
- To use it in another file you must include the statement

extern int flag;

– extern

- States that the variable is defined in another file
– Function prototypes can be used in other files without an extern

statement
- Have a prototype in each file that uses the function

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

18

14.5 Notes on Compiling Multiple Source-
File Programs
Keyword static

– Specifies that variables can only be used in the file in which
they are defined

 Programs with multiple source files
– Tedious to compile everything if small changes have been

made to only one file
– Can recompile only the changed files
– Procedure varies on system

- UNIX: make utility

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

19

Software Engineering Observation 14.1

Global variables should be avoided unless
application performance is critical because
they violate the principle of least privilege.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

20

Software Engineering Observation 14.2

Creating programs in multiple source files facilitates
software reusability and good software engineering.
Functions may be common to many applications.
In such instances, those functions should be stored in
their own source files, and each source file should
have a corresponding header file containing function
prototypes. This enables programmers of different
applications to reuse the same code by including the
proper header file and compiling their applications
with the corresponding source file.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

21

14.6 Program Termination with exit and
atexit

 Function exit
– Forces a program to terminate
– Parameters – symbolic constants EXIT_SUCCESS or EXIT_FAILURE
– Returns an implementation-defined value
– Example:

exit(EXIT_SUCCESS);

 Function atexit
atexit(functionToRun);

– Registers functionToRun to execute upon successful program
termination

- atexit itself does not terminate the program
– Register up to 32 functions (multiple atexit() statements)

- Functions called in reverse register order
– Called function cannot take arguments or return values

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

22 1 /* Fig. 14.4: fig14_04.c

 2 Using the exit and atexit functions */

 3 #include <stdio.h>

 4 #include <stdlib.h>

 5
 6 void print(void); /* prototype */

 7
 8 int main(void)

 9 {

10 int answer; /* user's menu choice */
11
12 atexit(print); /* register function print */
13 printf("Enter 1 to terminate program with function exit"
14 "\nEnter 2 to terminate program normally\n");
15 scanf("%d", &answer);
16
17 /* call exit if answer is 1 */
18 if (answer == 1) {
19 printf("\nTerminating program with function exit\n");
20 exit(EXIT_SUCCESS);
21 } /* end if */
22

Outline

fig14_04.c

(1 of 2)
atexit function instructs program

to call function print when the
program terminates

exit function forces program to terminate

http://www.uml.org/

		
1
/* Fig. 14.4: fig14_04.c

		
2
 Using the exit and atexit functions */

		
3
#include <stdio.h>

		
4
#include <stdlib.h>

		
5

		
6
void print(void); /* prototype */

		
7

		
8
int main(void)

		
9
{

		
10
 int answer; /* user's menu choice */

		
11

		
12
 atexit(print); /* register function print */

		
13
 printf("Enter 1 to terminate program with function exit"

		
14
 "\nEnter 2 to terminate program normally\n");

		
15
 scanf("%d", &answer);

		
16

		
17
 /* call exit if answer is 1 */

		
18
 if (answer == 1) {

		
19
 printf("\nTerminating program with function exit\n");

		
20
 exit(EXIT_SUCCESS);

		
21
 } /* end if */

		
22

 2007 Pearson Education,
Inc. All rights reserved.

2323 printf("\nTerminating program by reaching the end of main\n");
24
25 return 0; /* indicates successful termination */
26
27 } /* end main */
28
29 /* display message before termination */
30 void print(void)
31 {
32 printf("Executing function print at program "
33 "termination\nProgram terminated\n");
34 } /* end function print */

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
1

Terminating program with function exit
Executing function print at program termination
Program terminated

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
2

Terminating program by reaching the end of main
Executing function print at program termination
Program terminated

Outline

fig14_04.c

(2 of 2)
print function is called

at program termination

http://www.uml.org/

		
23
 printf("\nTerminating program by reaching the end of main\n");

		
24

		
25
 return 0; /* indicates successful termination */

		
26

		
27
} /* end main */

		
28

		
29
/* display message before termination */

		
30
void print(void)

		
31
{

		
32
 printf("Executing function print at program "

		
33
 "termination\nProgram terminated\n");

		
34
} /* end function print */

		Enter 1 to terminate program with function exit

Enter 2 to terminate program normally

1

Terminating program with function exit

Executing function print at program termination

Program terminated

Enter 1 to terminate program with function exit

Enter 2 to terminate program normally

2

Terminating program by reaching the end of main

Executing function print at program termination

Program terminated

 2007 Pearson Education, Inc. All rights reserved.

24

14.7 volatile Type Qualifier

 volatile qualifier
– Variable may be altered outside program
– Variable not under control of program
– Variable cannot be optimized

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

25

14.8 Suffixes for Integer and Floating-
Point Constants
 C provides suffixes for constants

– unsigned integer – u or U
– long integer – l or L
– unsigned long integer – ul, lu, UL or LU
– float – f or F
– long double – l or L
– Examples:

174u

467L

3451ul

– If integer constant is not suffixed type determined by first type
capable of storing a value of that size (int, long int, unsigned
long int)

– If floating point not suffixed of type double

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

26

14.9 More on Files
 C can process binary files

– Not all systems support binary files
- Files opened as text files if binary mode not supported

– Binary files should be used when rigorous speed, storage, and
compatibility conditions demand it

– Otherwise, text files are preferred
- Inherent portability, can use standard tools to examine data

 Function tmpfile
– Opens a temporary file in mode "wb+"

- Some systems may process temporary files as text files
– Temporary file exists until closed with fclose or until program

terminates
 Function rewind

– Positions file pointers to the beginning of the file

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

27

Fig. 14.5 | Binary file open modes.

 Mode Description

 rb Open an existing binary file for reading.

 wb Create a binary file for writing. If the file already exists, discard the current contents.

 ab Append; open or create a binary file for writing at end-of-file.

 rb+ Open an existing binary file for update (reading and writing).

 wb+ Create a binary file for update. If the file already exists, discard the current contents.

 ab+ Append; open or create a binary file for update; all writing is done at the end of the file.

http://www.uml.org/

		
Mode

		Description

		
rb

		Open an existing binary file for reading.

		
wb

		Create a binary file for writing. If the file already exists, discard the current contents.

		
ab

		Append; open or create a binary file for writing at end-of-file.

		
rb+

		Open an existing binary file for update (reading and writing).

		
wb+

		Create a binary file for update. If the file already exists, discard the current contents.

		
ab+

		Append; open or create a binary file for update; all writing is done at the end of the file.

 2007 Pearson Education, Inc. All rights reserved.

28

Performance Tip 14.1

Consider using binary files instead of text
files in applications that demand high
performance.

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

29

Portability Tip 14.1

Use text files when writing portable programs.

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

30 1 /* Fig. 14.6: fig14_06.c

 2 Using temporary files */

 3 #include <stdio.h>

 4
 5 int main(void)

 6 {

 7 FILE *filePtr; /* pointer to file being modified */

 8 FILE *tempFilePtr; /* temporary file pointer */

 9 int c; /* define c to hold characters read from a file */

10 char fileName[30]; /* create char array */
11
12 printf("This program changes tabs to spaces.\n"
13 "Enter a file to be modified: ");
14 scanf("%29s", fileName);
15
16 /* fopen opens the file */
17 if ((filePtr = fopen(fileName, "r+")) != NULL) {
18
19 /* create temporary file */
20 if ((tempFilePtr = tmpfile()) != NULL) {
21 printf("\nThe file before modification is:\n");
22

Outline

fig14_06.c

(1 of 3)

tmpfile function creates a
temporary file

http://www.uml.org/

		
1
/* Fig. 14.6: fig14_06.c

		
2
 Using temporary files */

		
3
#include <stdio.h>

		
4

		
5
int main(void)

		
6
{

		
7
 FILE *filePtr; /* pointer to file being modified */

		
8
 FILE *tempFilePtr; /* temporary file pointer */

		
9
 int c; /* define c to hold characters read from a file */

		
10
 char fileName[30]; /* create char array */

		
11

		
12
 printf("This program changes tabs to spaces.\n"

		
13
 "Enter a file to be modified: ");

		
14
 scanf("%29s", fileName);

		
15

		
16
 /* fopen opens the file */

		
17
 if ((filePtr = fopen(fileName, "r+")) != NULL) {

		
18

		
19
 /* create temporary file */

		
20
 if ((tempFilePtr = tmpfile()) != NULL) {

		
21
 printf("\nThe file before modification is:\n");

		
22

 2007 Pearson Education,
Inc. All rights reserved.

3123 /* read characters from file and place in temporary file */
24 while ((c = getc(filePtr)) != EOF) {
25 putchar(c);
26 putc(c == '\t' ? ' ': c, tempFilePtr);
27 } /* end while */
28
29 rewind(tempFilePtr);
30 rewind(filePtr);
31 printf("\n\nThe file after modification is:\n");
32
33 /* read from temporary file and write into original file */
34 while ((c = getc(tempFilePtr)) != EOF) {
35 putchar(c);
36 putc(c, filePtr);
37 } /* end while */
38
39 } /* end if */
40 else { /* if temporary file could not be opened */
41 printf("Unable to open temporary file\n");
42 } /* end else */

Outline

fig14_06.c

(2 of 3)

The program takes characters from filePtr
and places them in tempFilePtr,
converting tabs into spaces

The program then takes characters from
tempFilePtr and places them in filePtr.

http://www.uml.org/

		
23
 /* read characters from file and place in temporary file */

		
24
 while ((c = getc(filePtr)) != EOF) {

		
25
 putchar(c);

		
26
 putc(c == '\t' ? ' ': c, tempFilePtr);

		
27
 } /* end while */

		
28

		
29
 rewind(tempFilePtr);

		
30
 rewind(filePtr);

		
31
 printf("\n\nThe file after modification is:\n");

		
32

		
33
 /* read from temporary file and write into original file */

		
34
 while ((c = getc(tempFilePtr)) != EOF) {

		
35
 putchar(c);

		
36
 putc(c, filePtr);

		
37
 } /* end while */

		
38

		
39
 } /* end if */

		
40
 else { /* if temporary file could not be opened */

		
41
 printf("Unable to open temporary file\n");

		
42
 } /* end else */

 2007 Pearson Education,
Inc. All rights reserved.

3243
44 } /* end if */
45 else { /* if file could not be opened */
46 printf("Unable to open %s\n", fileName);
47 } /* end else */
48
49 return 0; /* indicates successful termination */
50
51 } /* end main */

This program changes tabs to spaces.
Enter a file to be modified: data.txt

The file before modification is:
0 1 2 3 4
 5 6 7 8 9

The file after modification is:
0 1 2 3 4
 5 6 7 8 9

Outline

fig14_06.c

(3 of 3)

http://www.uml.org/

		
43

		
44
 } /* end if */

		
45
 else { /* if file could not be opened */

		
46
 printf("Unable to open %s\n", fileName);

		
47
 } /* end else */

		
48

		
49
 return 0; /* indicates successful termination */

		
50

		
51
} /* end main */

		This program changes tabs to spaces.

Enter a file to be modified: data.txt

The file before modification is:

0 1 2 3 4

 5 6 7 8 9

The file after modification is:

0 1 2 3 4

 5 6 7 8 9

 2007 Pearson Education, Inc. All rights reserved.

33

14.10 Signal Handling

 Signal
– Unexpected event, can terminate program

- Interrupts (<ctrl> c), illegal instructions, segmentation violations,
termination orders, floating-point exceptions (division by zero,
multiplying large floats)

 Function signal
– Traps unexpected events
– Header <signal.h>
– Receives two arguments: a signal number and a pointer to the

signal handling function

 Function raise
– Takes an integer signal number and creates a signal

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

34

Fig. 14.7 | signal.h standard signals.

 Signal Explanation

 SIGABRT Abnormal termination of the program (such as a call to function abort).
 SIGFPE An erroneous arithmetic operation, such as a divide by zero or an operation

resulting in overflow.
 SIGILL Detection of an illegal instruction.
 SIGINT Receipt of an interactive attention signal.
 SIGSEGV An invalid access to storage.
 SIGTERM A termination request set to the program.

http://www.uml.org/

		
Signal

		Explanation

		
SIGABRT

		 Abnormal termination of the program (such as a call to function abort).

		
SIGFPE

		An erroneous arithmetic operation, such as a divide by zero or an operation resulting in overflow.

		
SIGILL

		 Detection of an illegal instruction.

		
SIGINT

		Receipt of an interactive attention signal.

		
SIGSEGV

		An invalid access to storage.

		
SIGTERM

		A termination request set to the program.

 2007 Pearson Education,
Inc. All rights reserved.

35 1 /* Fig. 14.8: fig14_08.c

 2 Using signal handling */

 3 #include <stdio.h>

 4 #include <signal.h>

 5 #include <stdlib.h>

 6 #include <time.h>

 7
 8 void signalHandler(int signalValue); /* prototype */

 9
10 int main(void)
11 {
12 int i; /* counter used to loop 100 times */
13 int x; /* variable to hold random values between 1-50 */
14
15 signal(SIGINT, signalHandler); /* register signal handler */
16 srand(clock());
17
18 /* output numbers 1 to 100 */
19 for (i = 1; i <= 100; i++) {
20 x = 1 + rand() % 50; /* generate random number to raise SIGINT */
21
22 /* raise SIGINT when x is 25 */
23 if (x == 25) {
24 raise(SIGINT);
25 } /* end if */
26

Outline

fig14_08.c

(1 of 3)

signal function instructs program to call
signalHandler if a SIGINT signal is detected

raise function causes a SIGINT signal to occur

http://www.uml.org/

		
1
/* Fig. 14.8: fig14_08.c

		
2
 Using signal handling */

		
3
#include <stdio.h>

		
4
#include <signal.h>

		
5
#include <stdlib.h>

		
6
#include <time.h>

		
7

		
8
void signalHandler(int signalValue); /* prototype */

		
9

		
10
int main(void)

		
11
{

		
12
 int i; /* counter used to loop 100 times */

		
13
 int x; /* variable to hold random values between 1-50 */

		
14

		
15
 signal(SIGINT, signalHandler); /* register signal handler */

		
16
 srand(clock());

		
17

		
18
 /* output numbers 1 to 100 */

		
19
 for (i = 1; i <= 100; i++) {

		
20
 x = 1 + rand() % 50; /* generate random number to raise SIGINT */

		
21

		
22
 /* raise SIGINT when x is 25 */

		
23
 if (x == 25) {

		
24
 raise(SIGINT);

		
25
 } /* end if */

		
26

 2007 Pearson Education,
Inc. All rights reserved.

3627 printf("%4d", i);
28
29 /* output \n when i is a multiple of 10 */
30 if (i % 10 == 0) {
31 printf("\n");
32 } /* end if */
33
34 } /* end for */
35
36 return 0; /* indicates successful termination */
37
38 } /* end main */
39
40 /* handles signal */
41 void signalHandler(int signalValue)
42 {
43 int response; /* user's response to signal (1 or 2) */
44
45 printf("%s%d%s\n%s",
46 "\nInterrupt signal (", signalValue, ") received.",
47 "Do you wish to continue (1 = yes or 2 = no)? ");
48
49 scanf("%d", &response);
50
51 /* check for invalid responses */
52 while (response != 1 && response != 2) {
53 printf("(1 = yes or 2 = no)? ");
54 scanf("%d", &response);
55 } /* end while */

Outline

fig14_08.c

(2 of 3)

http://www.uml.org/

		
27
 printf("%4d", i);

		
28

		
29
 /* output \n when i is a multiple of 10 */

		
30
 if (i % 10 == 0) {

		
31
 printf("\n");

		
32
 } /* end if */

		
33

		
34
 } /* end for */

		
35

		
36
 return 0; /* indicates successful termination */

		
37

		
38
} /* end main */

		
39

		
40
/* handles signal */

		
41
void signalHandler(int signalValue)

		
42
{

		
43
 int response; /* user's response to signal (1 or 2) */

		
44

		
45
 printf("%s%d%s\n%s",

		
46
 "\nInterrupt signal (", signalValue, ") received.",

		
47
 "Do you wish to continue (1 = yes or 2 = no)? ");

		
48

		
49
 scanf("%d", &response);

		
50

		
51
 /* check for invalid responses */

		
52
 while (response != 1 && response != 2) {

		
53
 printf("(1 = yes or 2 = no)? ");

		
54
 scanf("%d", &response);

		
55
 } /* end while */

 2007 Pearson Education,
Inc. All rights reserved.

3756
57 /* determine if it is time to exit */
58 if (response == 1) {
59
60 /* reregister signal handler for next SIGINT */
61 signal(SIGINT, signalHandler);
62 } /* end if */
63 else {
64 exit(EXIT_SUCCESS);
65 } /* end else */
66
67 } /* end function signalHandler */

 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48 49 50
 51 52 53 54 55 56 57 58 59 60
 61 62 63 64 65 66 67 68 69 70
 71 72 73 74 75 76 77 78 79 80
 81 82 83 84 85 86 87 88 89 90
 91 92 93
Interrupt signal (2) received.
Do you wish to continue (1 = yes or 2 = no)? 1
 94 95 96
Interrupt signal (2) received.
Do you wish to continue (1 = yes or 2 = no)? 2

Outline

fig14_08.c

(3 of 3)
signal function must be called

again after a signal occurs

http://www.uml.org/

		
56

		
57
 /* determine if it is time to exit */

		
58
 if (response == 1) {

		
59

		
60
 /* reregister signal handler for next SIGINT */

		
61
 signal(SIGINT, signalHandler);

		
62
 } /* end if */

		
63
 else {

		
64
 exit(EXIT_SUCCESS);

		
65
 } /* end else */

		
66

		
67
} /* end function signalHandler */

		 1 2 3 4 5 6 7 8 9 10

 11 12 13 14 15 16 17 18 19 20

 21 22 23 24 25 26 27 28 29 30

 31 32 33 34 35 36 37 38 39 40

 41 42 43 44 45 46 47 48 49 50

 51 52 53 54 55 56 57 58 59 60

 61 62 63 64 65 66 67 68 69 70

 71 72 73 74 75 76 77 78 79 80

 81 82 83 84 85 86 87 88 89 90

 91 92 93

Interrupt signal (2) received.

Do you wish to continue (1 = yes or 2 = no)? 1

 94 95 96

Interrupt signal (2) received.

Do you wish to continue (1 = yes or 2 = no)? 2

 2007 Pearson Education, Inc. All rights reserved.

38

14.11 Dynamic Memory Allocation:
Functions calloc and realloc
 Dynamic memory allocation

– Can create dynamic arrays
 calloc(nmembers, size)

– nmembers – number of elements
– size – size of each element
– Returns a pointer to a dynamic array

 realloc(pointerToObject, newSize)
– pointerToObject – pointer to the object being reallocated
– newSize – new size of the object
– Returns pointer to reallocated memory
– Returns NULL if cannot allocate space
– If newSize equals 0 then the object pointed to is freed
– If pointerToObject equals 0 then it acts like malloc

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

39

14.12 Unconditional Branching with goto

Unstructured programming
– Use when performance crucial
– break to exit loop instead of waiting until condition

becomes false

 goto statement
– Changes flow control to first statement after specified label
– A label is an identifier followed by a colon (i.e. start:)
– Quick escape from deeply nested loop

goto start;

http://www.uml.org/

 2007 Pearson Education, Inc. All rights reserved.

40

Performance Tip 14.2

The goto statement can be used to exit
deeply nested control structures efficiently.

http://www.uml.org/

 2007 Pearson Education,
Inc. All rights reserved.

41
Outline

fig14_09.c

 1 /* Fig. 14.9: fig14_09.c

 2 Using goto */

 3 #include <stdio.h>

 4
 5 int main(void)

 6 {

 7 int count = 1; /* initialize count */

 8
 9 start: /* label */

10
11 if (count > 10) {
12 goto end;
13 } /* end if */
14
15 printf("%d ", count);
16 count++;
17
18 goto start; /* goto start on line 9 */
19
20 end: /* label */
21 putchar('\n');
22
23 return 0; /* indicates successful termination */
24
25 } /* end main */

 1 2 3 4 5 6 7 8 9 10

Labels for use with goto statement

goto statement sends
program to specified label

http://www.uml.org/

		
1
/* Fig. 14.9: fig14_09.c

		
2
 Using goto */

		
3
#include <stdio.h>

		
4

		
5
int main(void)

		
6
{

		
7
 int count = 1; /* initialize count */

		
8

		
9
 start: /* label */

		
10

		
11
 if (count > 10) {

		
12
 goto end;

		
13
 } /* end if */

		
14

		
15
 printf("%d ", count);

		
16
 count++;

		
17

		
18
 goto start; /* goto start on line 9 */

		
19

		
20
 end: /* label */

		
21
 putchar('\n');

		
22

		
23
 return 0; /* indicates successful termination */

		
24

		
25
} /* end main */

		 1 2 3 4 5 6 7 8 9 10

 2007 Pearson Education, Inc. All rights reserved.

42

Software Engineering Observation 14.3

The goto statement should be used only in
performance-oriented applications. The
goto statement is unstructured and can
lead to programs that are more difficult to
debug, maintain and modify.

http://www.uml.org/

	14
	Slide Number 2
	OBJECTIVES
	Slide Number 4
	Slide Number 5
	14.1 Introduction
	14.2 Redirecting Input/Output on UNIX and DOS Systems
	14.2 Redirecting Input/Output on UNIX and DOS Systems
	14.3 Variable-Length Argument Lists
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Common Programming Error 14.1
	14.4 Using Command-Line Arguments
	Slide Number 15
	Slide Number 16
	14.5 Notes on Compiling Multiple Source-File Programs
	14.5 Notes on Compiling Multiple Source-File Programs
	Software Engineering Observation 14.1
	Software Engineering Observation 14.2
	14.6 Program Termination with exit and atexit
	Slide Number 22
	Slide Number 23
	14.7 volatile Type Qualifier
	14.8 Suffixes for Integer and Floating-Point Constants
	14.9 More on Files
	Slide Number 27
	Performance Tip 14.1
	Portability Tip 14.1
	Slide Number 30
	Slide Number 31
	Slide Number 32
	14.10 Signal Handling
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	14.11 Dynamic Memory Allocation: Functions calloc and realloc
	14.12 Unconditional Branching with goto
	Performance Tip 14.2
	Slide Number 41
	Software Engineering Observation 14.3

